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ON SOME GATEWAYS BETWEEN SUM RULES

FABRICE GAMBOA, JAN NAGEL, AND ALAIN ROUAULT

Abstract. We present correspondences induced by some classical mappings

between measures on an interval and measures on the unit circle. More pre-

cisely, we link their sequences of orthogonal polynomial and their recursion
coefficients. We also deduce some correspondences between particular equi-

librium measures of random matrix ensembles. Additionally, we show that

these mappings open up gateways between the sum rules associated with some
classical models, leading to new formulations of several sum rules.

1. Introduction

The relation between orthogonal polynomials on the unit circle (OPUC) and
orthogonal polynomials on the line (OPRL) is a longstanding problem. When a
measure on the unit circle is mapped to a measure on the real line, what is the
relation between the orthogonal polynomials related to these measures or their
recursion coefficients? First results in this direction go back to Szegő, who found
a relation between the orthogonal polynomials when the mapping on the real line
is the pushforward under z 7→ z + z−1, now called the Szegő mapping, see [40], p.
880 for a historical account. The relation between the recursion coefficients was
found by Geronimus: surprisingly, the so-called Verblunsky coefficients (αk)k≥0 of
the recursion on the unit circle appear in a decomposition of the Jacobi coefficients
on the real line, forming an identity now known as the Geronimus relations. Since
then, a variety of mappings have been studied, motivated from applications for
orthogonal polynomials [5, 16] operator theory [28, 20, 13] or signal processing
[17, 19, 9].

Let us highlight the implications of such mappings and relations in particular
on important identities in spectral theory called sum rules. Sum rules are iden-
tities between two nonnegative functionals of a probability measure µ compactly
supported on R (resp. ν supported on T). On the one hand, the first functional
is an entropy-like functional with respect to some reference measure. On the other
hand, the second functional is built from Jacobi coefficients (resp. Verblunsky co-
efficients) of µ (resp. ν) and vanishes only for the reference measure. We call the
left hand side (LHS) the spectral side and the right hand side (RHS) the coefficient
side.
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The first historical example of such a sum rule is the classical Szegő-Verblunsky
identity,

1

2π

∫ 2π

0

log gν(θ)dθ =

∞∑
k=0

log(1− |αk|2) , (1.1)

where ν is a measure on the unit circle with Lebesgue decomposition

dν(θ) = gν(θ)
dθ
2π + dνs(θ)

having Verblunsky coefficients (αk)k≥0. Both sides of (1.1) vanish if, and only if, ν
is the uniform measure on the circle (the reference measure in this case). We refer
to Chapter 1 of [40] for a discussion of the origin of this sum rule.

The most famous sum rule for measures on the line is the Killip-Simon sum
rule [32]. An exhaustive discussion and history of this sum rule can be found in
Section 1.10 of the book [40] and a deep analytical proof in Chapter 3 therein. The
reference measure for this sum rule is the semicircle law (SC).

An important consequence of these two sum rules is the equivalence of two
conditions for the finiteness of both sides, one formulated in terms of Verblunsky or
Jacobi coefficients and the other as a spectral condition. In the words of Simon [40],
these are the gems of spectral theory. In [26] and [23], we revisited these results
from a probabilistic point of view and gave a new proof based on large deviations.
We also refer to the work of Breuer et al. [10] which enlightens non-probabilists
about [23], [26]. The method was robust enough to prove new sum rules with
reference measures such as Marchenko-Pastur (MP), Kesten-McKay (KMK) on the
real line and Gross-Witten (GW), Hua-Pickrell (HP) on the unit circle.

The main contribution of this paper is two-fold. On the one hand, we gather a
series of results on relations between measures on the unit circle and measures on
the real line and their orthogonal polynomials under several well known mappings:
Szegő, Delsarte-Genin (DG), Derevyagin-Vinet-Zhedanov (DVZ) and Möbius. On
the other hand, we show how these relations allow to catch a –potentially new– sum
rule from an existing one. The main idea is easy: we transform both sides according
to the mapping. While our first contribution is merely expository in nature, we
believe the second contribution can be of great interest, either to find new sum
rules or to highlight connections, or “gateways”, between existing identities.

As an easy example for such a gateway, the Szegő-Verblunsky sum rule (1.1) leads
to an identity for measures on [−2, 2], when both sides are transformed according
to the Szegő mapping. The LHS may be written as an integral with respect to the
Arcsine law while the Geronimus relations allow to rewrite the RHS (see Section
6.1). To give an overview of further results (we refer to Section 3 for the statement
of the sum rules and Section 4 for the definition of the mappings):

• Particular cases of the KMK-sum rule can be obtained from the HP-sum
rule by the Szegő mapping or by the DG mapping (Section 6.2).

• The GW-sum rule implies the new sum rules (6.7) and (6.13) by the Szegő
mapping.

• The GW-sum rule leads to the reformulations (6.19) and (6.18) under the
DG mapping, with a new formula for the RHS in Theorem 6.1.

• Under the DVZ mapping, the GW-sum rule leads to a variant of the Killip-
Simon sum rule (6.22).

• We prove a new sum rule with reference to the Poisson measure Pois(ζ) in
Theorem 6.2.
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• Another new Poisson sum rule is obtained from a recent result of [6] in
Proposition 6.3.

• A new analytical proof of a weak version of the HP-sum rule is in Proposi-
tion 8.1.

The paper is organized as follows: In Section 2 we recap the required background
on orthogonal polynomials on the real line and on the unit circle with corresponding
recursion formulas. In Section 3 we recall the main known sum rules with their
reference measures. Section 4 discusses the mappings used in our work. Then, in
Section 5 we apply these mappings to our reference measures. Section 6 presents
the gateways between OPUC sum rules and OPRL sum rules. In Section 7 are the
proofs of some new sum rules and some auxiliary results are in Section 8.

2. Orthogonal polynomials

Let M1(R) (resp. M1(T)) denote the set of all probability measures on R (resp.
on the unit circle T = ∂D, where D is the open unit disk D = {z ∈ C : |z| < 1}).
Additionally, we write M1,s(T) for the set of all symmetric probability measures
on T, invariant under the transformation z 7→ z̄.

2.1. OPRL. The sequence of orthogonal polynomials on the real line (OPRL)
is well defined for a probability measure µ ∈ M1(R) with a compact support
consisting of infinitely many points, a.k.a. nontrivial case (in constrast to a finite
support consisting of n points, a.k.a. trivial case). They are obtained by applying
to the sequence 1, x, x2, . . . the orthonormalizing Gram-Schmidt procedure. The
resulting polynomials p0, p1, . . . , with pk of degree k, obey the recursion relation

xpk(x) = ak+1pk+1(x) + bk+1pk(x) + akpk−1(x) (2.1)

for k ≥ 0, with p−1 = 0. The recursion or Jacobi coefficients (or short “J-
coefficients”) satisfy that for all k, bk ∈ R and ak > 0. Notice that here the
orthogonal polynomials are not monic but normalized in L2(µ). The monic poly-
nomials satisfy the recursion

xPk(x) = Pk+1(x) + bk+1Pk(x) + a2kPk−1(x) . (2.2)

When the support of µ consists of n points, the orthogonal polynomials might be
defined up to degree n− 1 and J-coefficients b1, a1, . . . , an−1, bn are well defined.

For a non-trivial measure µ let us equip the vector space L2(µ) with the basis
(pk)k≥0. Then the linear map f 7→ xf , multiplication by the identity, is represented
by the tridiagonal matrix

Jµ =


b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3
...

. . .
. . .

. . .

 . (2.3)

Conversely, if H is a bounded Hermitian operator on an infinitely dimensional
Hilbert space H, and e is a cyclic vector, then we can define the spectral measure
µ of the pair (H, e) and then (H, H, e) is isomorphic to (ℓ2, Jµ, e1) where e1 =
(1, 0, 0, . . . )t. Such a correspondence still holds between Hermitian operators on
an n-dimensional space and measures supported by n points and n× n tridiagonal
matrices.
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If the support of µ is contained in [0,∞), there is a decomposition of J-coefficients,

bk = z2k−2 + z2k−1,

a2k = z2k−1z2k, (2.4)

with z0 = 0 and zk ≥ 0 for k ≥ 1 (see [15] p.47). The zk will be called the canonical
coefficients and they are uniquely determined by the J-coefficients.

If µ is nontrivial with support contained in the interval [−2, 2], there exists a
decomposition of J-coefficients,

bk+1 = (1− u2k)u2k+1 − (1 + u2k)u2k−1,

a2k+1 = (1− u2k)(1− u2
2k+1)(1 + u2k+2), (2.5)

with u0 = −1 and uk ∈ (−1, 1) for all k ≥ 1. The uk will be called canonical
moments (although more classically, the 1

2 (uk + 1) are called canonical moments
[21]) and they are uniquely determined by the J-coefficients. If µ is nontrivial,
uk ∈ (−1, 1) for all k ≥ 1, while if µ is supported by n points, we can still define
u1, . . . , u2n−2 ∈ (−1, 1) and u2n−1 ∈ {−1, 1}. Let us notice that if µ is symmetric,
then u2k+1 = 0 for all k, all the diagonal coefficients bk vanish and

a2k+1 = (1− u2k)(1 + u2k+2) (k ≥ 0) . (2.6)

2.2. OPUC. For a probability measure ν ∈ M1(T) supported by at least k + 1
points, the inductive relation between two successive monic polynomials Φk+1 and
Φk, where Φk has degree k, orthogonal with respect to ν involves a complex number
αk and may be written as

Φk+1(z) = zΦk(z)− αkΦ
∗
k(z) where Φ∗

k(z) := zkΦk(1/z̄). (2.7)

The complex numbers αk = −Φk+1(0) , k ≥ 0 are the so-called Verblunsky coeffi-
cients (in short V-coefficients). They are also called Schur, Levinson, Szegő coeffi-
cients in other contexts or canonical moment as well [21]. We also set α−1 = −1.
The V-coefficients satisfy |αk−1| < 1 if k ≥ 1 and the support of ν contains at
least k + 1 points and |αk−1| = 1 if the support consists of exactly k points. For
a symmetric measure ν ∈ M1,s(T), the V-coefficients are real. We will denote by
(φk)k≥0 the sequence of orthonormal polynomials on the unit circle (OPUC).

In the basis (χk)k≥0 obtained by orthonormalizing 1, z, z−1, z2, z−2, . . . , the lin-
ear transformation f → zf in L2(ν) is represented by the so-called CMV-matrix

Cµ =


ᾱ0 ᾱ1ρ0 ρ1ρ0 0 0 . . .
ρ0 −ᾱ1α0 −ρ1α0 0 0 . . .
0 ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 . . .
0 ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 . . .
0 0 0 ᾱ4ρ3 −ᾱ4α3 . . .
. . . . . . . . . . . . . . . . . .

 (2.8)

with ρk =
√

1− |αk|2 for every k ≥ 0 in the non-trivial case.
Conversely, if U is a unitary operator on an infinite dimensional Hilbert space

H and e is a cyclic vector, then we can define the spectral measure ν of the pair
(U, e) and then (H, U, e) is isomorphic to (ℓ2, Cν , e1). Let

Θk =

(
αk ρk
ρk −αk

)
(2.9)
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and

L = Θ0 ⊕Θ2 ⊕ · · · , M = 1⊕Θ1 ⊕Θ3 ⊕ · · · , (2.10)

where 1 denotes the 1 × 1 identity matrix and ⊕ is the direct sum operator. The
unitary operators L and M satisfy

Cν = LM . (2.11)

For probability measures ν, µ both on R or on T, let K(ν|µ) denote the Kullback-
Leibler divergence or relative entropy of ν with respect to µ:

K(ν |µ) =


∫

log
dν

dµ
dν if ν ≪ µ and log dν

dµ ∈ L1(ν),

∞ otherwise.
(2.12)

3. Reference measures and sum rules

3.1. Measures on R. We start with measures on the real line and state sum
rules relative to these measures. In order to formulate the spectral side, we need
some support conditions. For c− < c+ we define the set S1(c

−, c+) as the set of
probability measures µ on R whose support satisfies

supp(µ) = I ∪ E,

where I ⊂ [c−, c+] and E = E(µ) is an at most countable subset of [c−, c+]c.

3.1.1. Semicircle distribution. The semicircle law is

SC(dx) =
1

2π

√
4− x2 1{−2≤x≤2} dx. (3.1)

It is the central probability measure in classical random matrix theory. Indeed, it
is the equilibrium measure for a large class of random matrix models (the limit of
their empirical eigenvalue distribution). The Jacobi matrix of SC is also called the
free Jacobi matrix with J-coefficients

aSCk = 1, bSCk = 0 for all k ≥ 1 . (3.2)

We start by stating the classical sum rule of [33] (and explained in [41] p.37),
the new probabilistic proof using large deviations might be found in [23]. For a
probability measure µ on R with recursion coefficients ak, bk as in (2.1), define the
sum

IH(µ) =
1

2

∞∑
k=1

b2k +G(a2k), (3.3)

where

G(x) = x− 1− log x . (3.4)

Furthermore, define

FSC(x) :=

∫ |x|

2

√
t2 − 4 dt =

|x|
2

√
x2 − 4− 2 log

(
|x|+

√
x2 − 4

2

)
if |x| ≥ 2 and FH(x) = ∞ otherwise. Then the following remarkable identity holds.
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Theorem 3.1 ([33]). Let J be a Jacobi matrix with diagonal entries b1, b2, . . . ∈ R
and subdiagonal entries a1, a2, . . . > 0 satisfying supk(ak + |bk|) < ∞ and let µ be
the associated spectral measure. Then IH(µ) is infinite if µ /∈ S1(−2, 2) and for
µ ∈ S1(−2, 2),

K(SC | µ) +
∑

λ∈E(µ)

FSC(λ) = IH(µ),

where both sides may be infinite simultaneously.

Let us emphazise that for a sum rule as in Theorem 3.1, both sides are nonneg-
ative and vanish if and only if µ is equal to the reference measure, which is the
semicircle law SC in this case.

3.1.2. Marchenko-Pastur distribution. The Marchenko-Pastur distribution with pa-
rameter τ ∈ (0, 1] is

MPτ (dx) =

√
(x− τ−)(τ+ − x)

2πτx
1[τ−,τ+](x)dx . (3.5)

where τ± =
√
1± τ . In random matrix theory, it is the equilibrium measure of the

Laguerre ensemble. Its canonical coefficients (see (2.4)) are

z2k−1 = 1, z2k = τ (k ≥ 1)

with z0 = 0, which correspond to the J-coefficients

ak =
√
τ , bk+1 = 1 + τ (k ≥ 1)

with b1 = 1. Notice that the MP distribution is not symmetric. Let IL be defined
by

IL(µ) =
∞∑
k=1

τ−1G(z2k−1) +G(τ−1z2k) . (3.6)

Furthermore, define for x /∈ (τ−, τ+)

FMP(x) :=

∫
I(x)

√
(t− τ+)(t− τ−)

τt
dt

where I(x) = [τ+, x] if x ≥ τ+ and I(x) = [x, τ−] if 0 < x ≤ τ−. Then we have the
following theorem.

Theorem 3.2 ([23] Theorem 2.2). Let µ ∈ M1([0,∞)) be a non-trivial measure
with compact support and 0 < τ ≤ 1. Then IL(µ) = ∞ if µ /∈ S1(τ

−, τ+) and if
µ ∈ S1(τ

−, τ+) we have

K(MP(τ) |µ) +
∑

λ∈E(µ)

FMP(λ) = IL(µ), (3.7)

where both sides may be infinite simultaneously.
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3.1.3. The KMK distribution. The Kesten-McKay law with parameters κ1, κ2 ≥ 0
is denoted by KMK(κ1, κ2) and has the density

KMK(κ1, κ2)(dx) =
(2 + κ1 + κ2)

2π

√
(x− u−)(u+ − x)

4− x2
1{u−<x<u+} dx (3.8)

where

u± =
2
(
κ2
2 − κ2

1 ± 4
√
(1 + κ1)(1 + κ2)(1 + κ1 + κ2)

)
(2 + κ1 + κ2)2

. (3.9)

It is the equilibrium measure of the Jacobi ensemble. The canonical moments of
KMK(κ1, κ2) of even and odd index are, respectively:

uκ1,κ2

2k ≡ uκ1,κ2
e := − κ1 + κ2

2 + κ1 + κ2
, uκ1,κ2

2k+1 ≡ uκ1,κ2
o :=

κ2 − κ1

2 + κ1 + κ2
. (3.10)

We will consider also a symmetric version with κ1 = κ2 = κ, we will denote it
KMK(κ) := KMK(κ, κ):

KMK(κ)(dx) =
(1 + κ)

π

√
u2 − x2

4− x2
1{|x|≤u} dx, (3.11)

where

u = 2

√
1 + 2κ

1 + κ
.

The canonical moments of KMK(κ) are

uκ
2k = u(κ) :=

−κ

1 + κ
, u

(κ)
2k−1 = 0 , (3.12)

see [27, Section 6] for the linearly transformed canonical moments. For κ = 0, the
Kesten-McKay law is the Arcsine distribution

Arcsine(dx) :=
1

π
√
4− x2

1{−2<x<2} dx , (3.13)

whose canonical coefficients are all zero.
To state the sum rule, we need some more notation. Set for u ∈ (−1, 1)

Hκ1,κ2
e (u) := −(1 + κ1 + κ2) log

1− u

1− uκ1,κ2
e

− log
1 + u

1 + uκ1,κ2
e

,

Hκ1,κ2
o (u) := −(1 + κ1) log

1− u

1− uκ1,κ2
o

− (1 + κ2) log
1 + u

1 + uκ1,κ2
o

.

(3.14)

For a non-trivial measure µ ∈ M1([−2, 2]) with canonical moments uk ∈ (−1, 1),
define

IJ(µ) =
∞∑
k=1

Hκ1,κ2
o (u2k−1) +Hκ1,κ2

e (u2k) . (3.15)

Finally, for the contribution of the outlying support points, we define for x /∈
(u−, u+)

FKMK(κ1,κ2)(x) =

∫
I(x)

(2 + κ1 + κ2)

√
(t− u+)(t− u−)

4− t2
dt (3.16)

where I(x) = [u+, x] if x ∈ [u+, 2] and I(x) = [x, u−] if x ∈ [−2, u−].
We are now able to give the sum rule relative to the KMKmeasure. It is Theorem

2.3 in [23], where it is formulated for linearly transformed measures on [0, 1].
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Theorem 3.3. Let µ ∈ M1([−2, 2]) be a nontrivial measure and κ1, κ2 ≥ 0. Then
IJ(µ) = ∞ if µ /∈ S1(u

−, u+), and if µ ∈ S1(u
−, u+) we have

K(KMK(κ1, κ2) |µ) +
∑

λ∈E(µ)

FKMK(κ1,κ2)(λ) = IJ(µ), (3.17)

where both sides may be infinite simultaneously.

Remark 1. In the particular case κ1 = κ2 = 0, we obtain the identity

K(Arcsine |µ) = −
∞∑
k=1

log(1− u2
k) . (3.18)

It is very close to the results of Gamboa and Lozada [22] and equivalent to the
so-called C0 sum rule of Simon and Zlatos [40, Theorem 13.8.8]:

K(Arcsine |µ) = log 2−
∞∑
k=1

log a2k . (3.19)

Indeed, using (2.5) we can write

−
n∑

k=1

log a2k = − log 2− log(1− u2n) +

2n∑
k=1

− log(1− u2
k) . (3.20)

Suppose that the last sum is bounded, then limn→∞ u2n = 0 and hence

−
∞∑
k=1

log a2k = log 2−
∞∑
k=1

log(1− u2
k) . (3.21)

On the other hand, since log(1− u2n+2) ≤ log 2 , (3.20) implies

2n∑
k=1

− log(1− u2
k) ≤ 2 log 2−

n∑
k=1

log a2k

and when the sum on the LHS diverges, −
∑∞

k=1 log a
2
k does as well, so that (3.21)

holds true in any case.

3.2. Measures on T. In analogy to the real case we introduce for 0 ≤ θ− < θ+ ≤
2π the set ST

1 (θ
−, θ+) of probability measures ν ∈ M1(T) supported on I ∪ E,

where I is a subset of the arc

{z = eiθ ∈ T | θ ∈ [θ−, θ+]} (3.22)

and where E = E(ν) is an at most countable subset of the complement of the set
(3.22).

3.2.1. Uniform distribution. We write UNIF for the normalized Lebesgue measure
on T

UNIF(dθ) =
dθ

2π
.

Its V-coeffcients are

αk = 0, k ≥ 0 .

The classical Szegő-Verblunsky theorem (see [41], Theorem 1.8.6) is the identity

1

2π

∫
T
log gν(e

iθ)dθ =

∞∑
k=0

log(1− |αk|2) , (3.23)
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where ν ∈ M1(T) is nontrivial with V-coefficients αk and with Lebesgue decompo-
sition

dν = gνdUNIF+dνs

with respect to UNIF. Changing signs in both sides of this equation leads to

K(UNIF |ν) = −
∞∑
k=0

log(1− |αk|2). (3.24)

3.2.2. Gross-Witten. The Gross-Witten measures are a class of equilibrium mea-
sures for random matrix distributions with potential

Vg(z) = −gRe(z) , (3.25)

with parameter g ∈ R. For details and applications of this distribution we refer to
[30] p. 203, [29], and [42].

If −1 ≤ g ≤ 1 (ungapped or strongly coupled phase), the Gross-Witten measure
GW(g) is supported by T and is given by :

GW(g)(dz) =
1

2π
(1 + g cos θ) dθ, (3.26)

with z = eiθ, θ ∈ [−π, π). Note that τπ(GW(g)) = GW(−g), where∫
f(θ)dτπ(µ)(θ) =

∫
f(θ + π)dµ(θ) . (3.27)

Since1

αk(τπ(µ)) = (−1)k+1αk(µ), (3.28)

see [39], we state the V-coefficients only for the case g < 0.
For −1 ≤ g < 0, the measure GW(g) has V-coefficients

αg
n = αn(GW(g)) =


− x+ − x−

xn+2
+ − xn+2

−
if − 1 < g < 0,

− 1

n+ 2
if g = −1 ,

(3.29)

(see Simon [39], p. 86), where x± = −g−1 ±
√
g−2 − 1 are roots of the equation

x+
1

x
= −2

g
.

We remark that the measure GW(g) has only nontrivial moments of order ±1.
For |g| ≥ 1 (gapped or weakly coupled phase), let θg ∈ [0, π] be the solution of

sin2(θg/2) = |g|−1 . (3.30)

When g ≤ −1, the Gross-Witten measure is for z = eiθ, θ ∈ [0, 2π)

GW(g)(dz) =
|g|
π

sin(θ/2)
√

sin2(θ/2)− cos2(θg/2) 1[π−θg,π+θg] dθ . (3.31)

Summarizing formula (7.22) in Zhedanov [43], we have that in the case g < −1 the
V-coefficients are

αg
n−1 = αn−1(GW(g)) = 1− 2

1 + q

1− qn+2

1− qn+1
, (3.32)

1In the sequel, we will use the notation αk(ν) or uk(µ) when the context needs the name of
the measure we work with.
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where

q =
(√

|g| −
√
|g| − 1

)2
. (3.33)

Since 0 < q < 1, it holds that

lim
n→∞

αg
n = −

√
1− |g|−1 = − cos(θg/2) . (3.34)

When g ≥ 1, the equilibrium measure is

GW(g)(dz) =
|g|
π

cos(θ/2)
√

sin2(θg/2)− sin2(θ/2) 1[−θg,θg] dθ . (3.35)

Note that again τπ(GW(g)) = GW(−g), so that by (3.28) the V-coefficients in this
case can be obtained from (3.32).

Remark 2. We may rotate GW as in [38] and consider the equilibrium measure
obtained by pushing forward GW(g) by a rotation of angle η instead of π in (3.27).

The first sum rule relative to the Gross-Witten equilibrium measure GW(g)
was discovered by Simon for g = −1 (see [39, Theorem 2.8.1]), proved later with
probabilistic methods by Breuer, Simon and Zeitouni [11]. It is easily extended to
|g| ≤ 1 ( [24, Corollary 5.4]). For −1 ≤ g ≤ 0 and ν ∈ M1(T) nontrivial, it is the
identity

K(GW(g) | ν) = H(g) +
g

2
− g

2

∞∑
k=0

|αk − αk−1|2

+

∞∑
k=0

− log(1− |αk|2) + g|αk|2 , (3.36)

where

H(g) = K(GW(g) | UNIF) = 1−
√
1− g2 + log

1 +
√
1− g2

2
. (3.37)

We recall that in (3.36), α−1 = −1. The sum rule (3.36) implies the following gem,
conditions for finiteness of the Kullback-Leibler divergence. The RHS of (3.36) is
finite if and only if

∞∑
k=0

|αk|2 < ∞ if − 1 < g ≤ 0, (3.38)

∞∑
k=0

|αk|4 < ∞ and

∞∑
k=1

|αk − αk−1|2 < ∞ if g = −1 . (3.39)

Remark 3. Provided that
∑

k |αk|2 < ∞, we may rewrite the sum rule as

K(GW(g) | ν) = H(g) + gRe

∞∑
k=0

αkᾱk−1 −
∞∑
k=0

log(1− |αk|2), (3.40)

[39, p. 174], for the case g = −1, which is extended to −1 < g ≤ 0 [24, Corollary
5.4]. Actually, since the LHS vanishes for ν = GW(g), we can also rewrite the sum
rule (3.36) as

K(GW(g) | ν) = gRe

∞∑
k=0

(αkᾱk−1 − α
g
kᾱ

g
k−1)−

∞∑
k=0

log
1− |αk|2

1− |αg
k|2

, (3.41)
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where αg
k is in (3.29). This RHS is also the RHS of a sum rule for GW(g) with

|g| > 1 (see [25]).

3.2.3. Hua-Pickrell. The Hua-Pickrell distribution appears in the study of random
matrices corresponding to the potential

Vd(z) = −2d log |1− z| , (3.42)

which is invariant by z 7→ z̄. Here, d is a complex parameter. It has been introduced
in [31] and appeared later in [36]. We also refer to [34], [7] and [8]. We will consider
here only the case of real parameter d > 0.

The equilibrium measure is the measure

HP(d)(dz) = (1 + d)

√
sin2(θ/2)− sin2(θd/2)

2π sin(θ/2)
1(θd,2π−θd)(θ)dθ , (3.43)

with z = eiθ, θ ∈ [0, 2π] and where θd ∈ (0, π) is such that

sin(θd/2) =
d

1 + d
. (3.44)

The orthogonal polynomials with respect to HP(d) are the Geronimus polyno-
mials with constant V-coefficients

αk ≡ γd := − d

1 + d
, k ≥ 0 . (3.45)

For γ ∈ D, let

Hd(γ) = − log
1− |γ|2

1− γ2
d

− 2d log
|1− γ|
1− γd

. (3.46)

The arguments of the functionsHd in the sum rule are the deformed V-coefficients
(see [8, Section 2.2]). For a nontrivial measure ν ∈ M1(T) they form a sequence of
parameters γk ∈ D, k ≥ 0 defined by

γk = ᾱk
Φ∗

k(1)

Φk(1)
, (k ≥ 0). (3.47)

and can be computed via the recursive definition

γ0 = ᾱ0, γk = ᾱk

k−1∏
j=0

1− γ̄j
1− γj

, (k ≥ 1). (3.48)

Of course, when ν is symmetric, then Φ∗
k(1) = Φk(1) and αk is real, so that the

deformed V-coefficients are the genuine V-coefficients.
Furthermore, define the function FHP for θ /∈ (θd, 2π − θd) :

FHP(e
iθ) :=

∫
I(θ)

(1 + d)

√
sin2

(
θd/2

)
− sin2(φ/2)

sin(φ/2)
dφ (3.49)

where I(θ) = [θ, θd] if θ ∈ (0, θd] and I(θ) = [2π − θd, θ] if θ ∈ [2π − θd, 2π).
Then the following sum rule holds.
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Theorem 3.4. [24, Theorem 5.1] Let d ≥ 0 and ν ∈ M1(T) be nontrivial with
(γk)k≥0 ∈ DN the sequence of its deformed V-coefficients. Then, if ν ∈ ST

1 (θd, 2π −
θd),

K(HP(d)|ν) +
∑

λ∈E(ν)

FHP(λ) =

∞∑
k=0

Hd(γk) , (3.50)

where both sides may be infinite simultaneously. If µ /∈ ST
1 (θd, 2π − θd), the RHS

equals +∞.

3.2.4. Poisson. The Poisson kernel is the probability measure on T given by

Pois(ζ)(dz) =
1− |ζ|2

2π|z − ζ|2
dz . (3.51)

It is the equilibrium measure of random matrices with potential

Vζ(z) = log |zζ̄ − 1|2, (3.52)

see [30, Proposition 5.3.9], or [31] and [2] for the study of the random matrix
ensembles. Note that Pois(0) = UNIF.

The V-coefficients of Pois(ζ) are

α0 = ζ, αk = 0 (k ≥ 1) . (3.53)

We are aware of two sum rules relative to the Poisson measure Pois(ζ). The first
one (Theorem 2.5.1 and formula (2.2.77) in [39]) is

K(Pois(ζ)|ν) = − log λ∞(ζ),

where, with φn the n-th orthonormal polynomial with respect to ν,

λ∞(ζ) = (1− |ζ|2) lim
n→∞

|φ∗
n(ζ)|−2 .

The second one is quoted in Proposition 6.3. Its statement needs some notations
given later in the paper. We state a third new sum rule in Theorem 6.2.

4. Mappings

Apart from the last one, all the mappings presented here are from T to R. They
push forward a probability measure ν on the circle to a probability measure µ on
the real line, which implies a possible connection of the J-coefficients of µ in terms
of the V-coefficients of ν. This may induce a connection between Jµ and Cν and
also a correspondence, or ”gateway” between sum rules.

4.1. Szegő. The Szegő mapping from T to [−2, 2] is defined by

z 7→ Sz(z) = z + z−1 , (4.1)

or in angular coordinates,

Sz(eiθ) = 2 cos θ . (4.2)

The mapping Sz is two-to-one from T to [−2, 2]. For a symmetric ν ∈ M1,s(T), we
let Sz(ν) = ν ◦ Sz−1 be the pushforward of ν by the Szegő mapping, which induces
a bijection between M1,s(T) and M1([−2, 2]), the set of probability measures on
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[−2, 2]. The OPUC (φn)n≥0 with respect to ν and the OPRL (pn)n≥0 with respect
to Sz(ν) are related by

pn(z) = z−nφ2n(z) + φ∗
2n(z)√

2(1− α2n−1)
, (4.3)

where α2n−1 are the real V-coefficients of ν. The Geronimus relations [40, Theorem
13.1.7] and equation (2.5) give the remarkable identity

uk(Sz(ν)) = αk−1(ν) (4.4)

for k ≥ 1 between the canonical moments of Sz(ν) and the V-coefficients of ν.

4.2. Delsarte-Genin (DG). For d > 0 we consider the following relation between
a point z ∈ T and x ∈ [−2d, 2d] given by

x = d
(
z1/2 + z−1/2

)
or x = 2d cos(θ/2) . (4.5)

The following computations mainly come from [18], [19], [17]. Therein, the param-
eter d is fixed to 1

2 . Notice that the concern about branches of the square-root is
addressed in [20, p. 518] . With the right choice, this mapping is a bijection from
T\{1} to (−2d, 2d), which we denote by DGd, the point 1 ∈ T corresponds to both
−2d and 2d.

Let ν ∈ Ms,1(T) and fix d = 1. We let DG1(ν) be the pushforward of ν
by DG1, with the convention that DG1(ν)({−2}) = DG1(ν)({2}) = 1

2ν({1}). It
is a symmetric measure on [−2, 2]. The monic orthogonal polynomials (Φn)n≥0

with respect to ν and the monic orthogonal polynomials (Pn)n≥0 with respect to
µ = DG1(ν) are related by

Pn(x) =
z−n/2(Φn(z) + Φ∗

n(z))√
2(1− αn−1)

, (4.6)

where αn−1 are the real V-coefficients of ν. The J-coefficients of µ are

a2n = (1 + αn−1)(1− αn−2), bn = 0 (n ≥ 1). (4.7)

The canonical coefficients of µ of odd index are zero by symmetry, so comparing
(2.5) and (4.7) we conclude

u2n(DG1(ν)) = αn−1(ν) (n ≥ 1), u0 = α−1 = −1 . (4.8)

The inverse relation between Φn and Pn is

Φn(z) =
zn/2

(
z1/2Pn+1(x)− σnPn(x)

)
z − 1

, (4.9)

with

σn =
Pn+1(2)

Pn(2)
= 1− αn−1. (4.10)

An easy rescaling is helpful when considering the general case d ̸= 1. Indeed,
write the polynomials orthogonal to DGd(ν) as Pn(x; d) = dnPn(x/d). Then their
V-coefficients satisfy

a2n = d2(1 + αn−1)(1− αn−2) . (4.11)

Sometimes it is more convenient to use the mapping

x = −id(z1/2 − z−1/2) , (4.12)
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or x = 2d sin θ. In this case we denote this mapping by DG−
d and the classical

mapping by DG+
d .

4.3. Derevyagin-Vinet-Zhedanov (DVZ). This map was intruduced in [20]
and generalized in [14]. It gives a remarkable relation between symmetric mea-
sures on T and measures on R, induced by a algebraic relation between the CMV
matrix and the Jacobi matrix, also called the Schur-Delsarte-Genin (SDG) map by
[14].

Let ν ∈ Ms,1(T) be a symmetric measure. Its V-coefficients are real, and when
the associated CMV matrix is written as in (2.11) in the form C = LM, we have
in this case Θ2

k = I2 (the identity in R2) for all k. This implies L2 = M2 = I and
the matrix J+ := L+M satisfies the following properties:

(1) J+ is real tridiagonal symmetric.
(2) J2

+ − 2I = C + Ct

(3) The J-coefficients in J+ are

ak = ρk−1, bk+1 = αk − αk−1 (k ≥ 1) (4.13)

and b1 = α0 + 1.
(4) Its spectral measure is given by

dµ(x) =
1

2
(2 + x) dDG1(ν), (4.14)

supported on [−2, 2]. Let us notice that this measure is not symmetric.

The measure µ defined by (4.14) will be denoted by DVZ+(ν).
If we consider J− = L −M then the spectral measure satisfies

dµ(x) =
1

2
(2− x) dDG1(ν) , (4.15)

and it is denoted by DVZ−(ν).

4.4. Möbius. The Möbius transform mz0 for z0 ∈ D = {z ∈ C : |z| < 1} is defined
by

mz0(z) =
z − z0
1− z̄0z

. (4.16)

It is an automorphism of D, sending z0 to 0, or of T. Its inverse is m−z0 .

5. Pushing forward measures

5.1. Transformation of UNIF. From the definitions we see easily that

Sz(UNIF) = DG1(UNIF) = Arcsine (5.1)

To compute the DVZ transform of UNIF, let us introduce the following notation.
For a < b the measure D(a, b) (resp. D(b, a)) is supported by (a, b) with density

2

π(b− a)

√
x− a

b− x

(
resp.

2

π(b− a)

√
b− x

x− a

)
. (5.2)

These measures are affine pushforwards of the beta-distribution with parameter
1
2 ,−

1
2 (resp. − 1

2 ,
1
2 ). The measure D(2,−2) is also a shift of the Marchenko-Pastur

distribution, in the hard edge case.
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The associated orthonormal polynomials are (up to an affine change) Chebyshev
of the third type (resp. fourth type). We then have

DVZ+(UNIF) = D(−2, 2) and DVZ−(UNIF) = D(2,−2).

The J-coefficients of D(−2, 2) are by (4.13)

ak = 1, bk+1 = 0 (k ≥ 1), (5.3)

and b1 = 1.

5.2. Transformation of GW. From the density (3.31), we deduce for g ≤ −1

Sz(GW(g))(dx) =
|g|
2π

√
4|g|−1 − 2− x

x+ 2
1(−2,4|g|−1−2)(x) dx

or in other words

Sz(GW(g)) = D(4|g|−1 − 1,−2) . (5.4)

For |g| ≤ 1 let us notice that the Gross-Witten density (3.26) is the mixture:

GW(g) = |g|GW(ϵ(g)) + (1− |g|)UNIF , (5.5)

where ϵ(g) is the sign of g. Since the Szegő mapping acts linearly on measures, we
obtain the complete picture

Sz(GW(g)) = µg =:


D(−2 + 4|g|−1,−2) if g ≤ −1,

|g|D(2,−2) + (1− |g|)Arcsine if − 1 ≤ g ≤ 0,

gD(−2, 2) + (1− g)Arcsine if 0 ≤ g ≤ 1,

D(2− 4g−1, 2) if g ≥ 1.

(5.6)

5.2.1. With DG when |g| ≥ 1. For g < −1, the change of variable

x = 2
√

|g| cos(θ/2)

gives

DG√
|g|(GW(g)) = SC (5.7)

When g > 1, the change of variable

x = 2
√
g sin(θ/2)

gives also DG−√
g(GW(g)) = SC.

5.2.2. With DG when |g| ≤ 1. Starting from (5.5) and since DG is linear, we get
for −1 ≤ g < 0

DG1(GW(g)) = ρg := |g|SC+(1− |g|)Arcsine . (5.8)

The corresponding canonical moments are

u2k = αg
k−1, u2k+1 = 0 (k ≥ 0) , (5.9)

where αg
k is in (3.29).

Similarly the application of DG−
1 leads, for 0 < g ≤ 1, to the mixture

DG−
1 (GW(g)) = gSC+(1− g)Arcsine . (5.10)
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5.3. Transformation of HP. The change of variable x = 2 cos θ in (3.43) gives

Sz(HP(d))(dx)

dx
=

2(1 + d)

2π

√
xd − x

(2− x)
√
2 + x

=
1 + d

π

√
(xd − x)(2 + x)

(4− x2)
.

where

xd =
2(1 + 2d− d2)

1 + 2d+ d2
. (5.11)

We conclude that

Sz(HP(d)) = KMK(2d, 0) , (5.12)

(recall that KMK(2d, 0) is supported on [−2, xd]).
The change of variable x = 2 cos(θ/2) in (3.43) gives for the density of DG1(HP(d))

(1 + d)

√
cos2(θd/2)− cos2(θ/2)

2π sin2(θ/2)
= (1 + d)

√
4 cos2(θd/2)− x2

π(4− x2)
,

so that we conclude

DG1(HP(d)) = KMK(d) . (5.13)

which is supported by [−x̂d, x̂d], with

x̂d = 2

√
1 + 2d

1 + d
. (5.14)

Note that the V-coefficients of HP(d) are constant equal to γd and then by (4.7)
the J-coefficients of KMK(d) are

a21 = 2(1 + γd), a2n = (1− γ2
d ) (n ≥ 2), bn = 0 (n ≥ 1) ,

which agrees with (3.12).
Let us summarize the above results by two tables :

Sz
UNIF Arcsine

GW(g), |g| ≤ 1 |g|D(−2ϵ(g), 2ϵ(g)) + (1− |g|)Arcsine
GW(g), |g| > 1 D(2ϵ(g)− 4g−1, 2ϵ(g))

HP(d) KMK(2d, 0)

DG+
1 DG−

1

UNIF Arcsine Arcsine
GW(g),−1 ≤ |g| ≤ 0 |g|SC+(1− |g|)Arcsine
GW(g), 0 ≤ |g| ≤ 1 |g|SC+(1− |g|)Arcsine
GW(g), g ≤ −1 SC (∗)
GW(g), g > 1 SC (∗)

HP(d) KMK(d)

Here (∗) means that DG±√
|g|

is applied.
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6. Gateways

In this section, we highlight connections between different sum rules arising
when measures are transformed by the mappings of Section 4. Unlike the large
deviation technique developed in [23], this method designing new sum rules is purely
analytical. Nevertheless, it requires an existing sum rule to run. In most cases, the
aim is to obtain an OPRL sum rule from an OPUC one.

A measurable mapping φ : X → Y between metric spaces induces a mapping
from M1(X) to M1(Y ) by µ 7→ φ(µ) = µ◦φ−1. A sum rule for measures in M1(Y )
may lead to an identity for measures µ ∈ M1(X) (or vice versa) by evaluating both
sides of the sum rule for φ(µ).

Suppose the mapping φ : X → Y is a bijection. Then µ 7→ φ(µ) is a bijection
from M1(X) to M1(Y ). The entropy part of a sum rule can then be obtained
directly by the reversible entropy principle:

K(µ0 | µ) = K(φ(µ0) | φ(µ)). (6.1)

Among the mappings introduced in Section 4, only the Möbius mapping is one to
one. However, the Szegő mapping is a bijection between symmetric measures on T
and measures on [−2, 2] and (6.1) still holds for φ = Sz and µ, µ0 ∈ M1,s(T). The
mappings DG±

d are bijective when restricted to T \ {1}. With the convention on
mapping the mass at 1, (6.1) also holds for φ = DG±

d . Then (6.1) also holds for
φ = DVZ± and therefore for all mappings considered in this paper.

Transforming the RHS of a sum rule is less straightforward, but may be simplified
if the coefficients of φ(µ) are connected with those of µ in a convenient way.

6.1. From UNIF to Arcsine. Using (6.1) we get, with ν ∈ M1,s(T) such that
Sz(ν) = µ,

K(Arcsine |µ) = K(UNIF | ν).

The Szegő formula (3.24), jointly with (4.4), gives

K(UNIF | ν) = −
∞∑
k=0

log(1− |αk|2(ν)) = −
∞∑
k=1

log(1− u2
k(µ)) ,

and we recover the sum rule relative to the arcsine law (3.18). Notice that UNIF
is a particular case of the following distributions,

UNIF = HP(0) = GW(0).

So that, the sum rule relative to Arcsine can be recovered from any sum rule relative
to one of these distributions.

6.2. From HP to KMK. The Kesten-McKay laws can be obtained from the Hua-
Pickrell distribution as

Sz(HP(d)) = KMK(2d, 0), DG1(HP(d)) = KMK(d).

These distributional identities allow to recover the sum rules with reference measure
KMK(2d, 0) or KMK(d). If ν is a symmetric distribution in ST

1 (θd, 2π − θd) then
Sz(HP(d)) (resp. DG1(ν)) is supported on [−2, 2] and belongs to SR

1 (−2, xd) (resp.
SR
1 (−x̂d, x̂d)).
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Let us consider the Szegő mapping of the sum rule (3.50). Let µ be supported
on [−2, 2]. If µ ∈ SR

1 (−2, xd), then a symmetric measure ν with Sz(ν) = µ belongs
to ST

1 (θd, 2π − θd). The LHS of the sum rule (3.50) evaluated at ν is

K(HP(d)|ν) +
∑

λ∈E(ν)

FHP(d)(λ) = K(KMK(2d, 0)|µ) + 2
∑

λ∈E(µ)

F(λ) (6.2)

where the factor 2 comes from the two support points in E(ν) corresponding to one
support point in E(µ), and where

2F(x) = 2FHP(d)(e
i arccos(x/2)) = 2

∫ x

xd

(1 + d)

√
t− xd

(2− t)
√
2 + t

dt = FKMK(2d,0)(x).

(6.3)

We therefore obtain (a particular case of) the LHS of (3.17). When looking at the
RHS of (3.50) evaluated at the symmetric measure ν, we see that the deformed
V-coefficients γk are the regular V-coefficients αk. But by the relation (4.4), they
are the canonical moments uk of µ = Sz(ν). Consequently, the RHS becomes

−
∞∑
k=1

log
1− u2

k

1− γ2
d

− 2d

∞∑
k=1

log
1− uk

1− γd
= −(1 + 2d)

∞∑
k=1

log
1− uk

1− γd
−

∞∑
k=1

log
1 + uk

1 + γd
.

(6.4)

The measure KMK(2d, 0) has all canonical moments equal to γd, and so (6.4) is
equal to IJ(µ) as given in (3.15). We have recovered the sum rule corresponding to
KMK(2d, 0).

Let us consider the DG mapping and let µ supported on [−2, 2] and symmetric.
If ν is a symmetric measure on T such that DG1(ν) = µ and ν ∈ ST

1 (θd, 2π − θd),
then µ ∈ SR

1 (−x̂d, x̂d). The LHS of (3.50) can then be transformed as

K(HP(d)|ν) +
∑

λ∈E(ν)

FHP(d)(λ)

= K(KMK(d)|µ) +
∑

λ∈E(µ)

F(λ). (6.5)

where for x > x̂d

F(x) = FHP(d)(e
2i arccos(x/2)) = FKMK(d)(x),

and we obtain the LHS of the KMK sum rule (3.17). Turning to the RHS, we first
observe that the canonical moments of µ satisfy by (4.8)

u2k+1(µ) = 0 , u2k(µ) = αk−1(ν) ,

hence

Hd(γk−1) = Hd(αk−1) = − log
1− α2

k−1

1− γ2
d

− 2d log
1− αk−1

1− γd

= −(1 + 2d) log
1− u2k

1− γd
− log

1 + u2k

1 + γd
= Hκ,κ

e (u2k)

since γd = ud,de . For odd index, we have Hd,d
o (u2k−1) = Hd,d

o (0) = 0, since both
µ and the reference measure are symmetric. We conclude that the RHS of the
DG sum rule transforms exactly to the RHS of the KMK sum rule for symmetric
measures.
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6.3. From GW. We now discuss how one may obtain new sum rules starting from
the sum rule (3.41) relative to GW(g), for −1 ≤ g ≤ 0. Applying the Szegő mapping
leads to a sum rule relative to µg in (5.6), a mixture of beta distributions. On the
other hand, the mapping DG1 leads to a sum rule relative to a mixture of SC and
Arcsine.

6.3.1. With Sz. Let µ by a measure on [−2, 2] and ν ∈ M1,s(T) with Sz(ν) = µ.
Then the LHS of (3.36) applied to ν gives by (6.1)

K(GW(g)|ν) = K(µg|µ). (6.6)

In the RHS of (3.36) evaluated at ν only real V-coefficients appear. By the relation
(4.4) we obtain the sum rule for µ with support [−2, 2]:

K(µg|µ) = H(g) +
g

2
− g

2

∞∑
k=1

(uk − uk−1)
2 (6.7)

+

∞∑
k=1

− log(1− u2
k) + gu2

k,

where uk are the canonical moments of µ.

Remark 4. When g = −1, (6.7) becomes

K(µ−1|µ) =
1

2
− log 2 +

1

2

∞∑
k=0

(uk+1 − uk)
2 +

∞∑
k=1

− log(1− u2
k)− u2

k, (6.8)

which is a version of [39, formula (2.8.6)]. But

µ−1 = D(2,−2) = T (MP1) , (6.9)

and where T : ξ 7→ ξ − 2, so that, by (6.1)

K(µ−1|µ) = K(MP1 |T−1(µ)) (6.10)

The RHS of the sum rule corresponding to K(MP1 |T−1(µ)) uses coefficients (zk)
associated to T−1(µ). To get an expression in terms of the (uk), we notice that if
ak, bk are the J-coefficients of µ, the J-coefficients of T−1(µ) are

ãk = ak, b̃k = bk + 2. (6.11)

Applying to ak and bk the decomposition into the canonical moment uk of µ accord-
ing to (2.5), and using the parameters (zk) defined in (2.4) we obtain the relations

z1(T
−1(µ)) = 2(1 + u1)(µ), zk(T

−1(µ)) = (1− uk−1(µ))(1 + uk(µ)), (k ≥ 1).
(6.12)

Combining the sum rule (3.7) relative to MP1 and (6.12), we obtain the identity

K(D(2,−2)|µ) =
∞∑
k=1

(
(1− uk−1)(1 + uk)− log[(1− uk−1)(1 + uk)]− 1

)
(6.13)

for µ with support [−2, 2].
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Let us compare the RHS of (6.13) and (6.8) by direct calculation. Denote by SN

the partial sum, up to N , of the RHS in (6.13). Obviously, we may write

SN =
1

2
− log 2 + uN − log(1 + uN )− u2

N

2
(6.14)

+
1

2

N∑
k=1

(uk − uk−1)
2 +

N−1∑
k=1

(− log(1− u2
k)− u2

k) (6.15)

(recall that u0 = −1). If the RHS of (6.7) is finite, the gem (3.39) warrants that
∞∑
k=1

u4
k < ∞ ,

∞∑
k=1

(uk+1 − uk)
2 < ∞ . (6.16)

Hence, in particular uN → 0 and the two sums in (6.15) converge. We therefore
recover (6.7). Conversely, if one of the conditions in (6.16) is not satisfied, we have
SN → ∞ since the RHS of (6.14) is bounded below by −2 log 2− 1

6.3.2. With DG. Recall that DG1(GW(g)) = ρg as in (5.8). If µ is symmetric and
supported on [−2, 2] and ν is symmetric on T such that DG1(ν) = µ, then from
(6.1)

K(ρg|µ) = K(GW(g)|ν) (6.17)

Now, in the sum rule (3.36) the V-coefficients of ν are real and using (4.8), we may
rewrite the last identity as

K(ρg|µ) = H(g) +
g

2
− g

2

∞∑
k=1

(u2k − u2k−2)
2 +

∞∑
k=1

− log(1− u2
2k) + gu2

2k. (6.18)

Here, uk is the k-th canonical moment of µ. The following theorem gives an alter-
native form of the RHS, obtained by combining the two sum rules relative to SC
and Arcsine.

Theorem 6.1. For µ symmetric and supported on [−2, 2] and −1 ≤ g ≤ 0,

K(ρg|µ) = Cg + |g|
∞∑
k=1

(a2k − 1− log a2k) + (1− |g|)
∞∑
k=1

log a2k (6.19)

where

Cg = −|g|(1− log 2) + 1−
√
1− g2 + log

1 +
√
1− g2

2
. (6.20)

Proof. From (5.8), ρg = |g|SC+(1− |g|)Arcsine, and applying Proposition 8.2 we
thus obtain

K(ρg | µ) = |g|
(
K(SC |µ)−K(SC |ρg)

)
+ (1− |g|)

(
K(Arcsine |µ)−K(Arcsine |ρg)

)
(6.21)

From the Killip-Simon sum rule (Theorem 3.1) and from (3.19) we know K(SC |µ)
and K(Arcsine |µ) respectively as functions of the J-coefficients. This gives the
coefficient dependent part of the RHS of (6.19). To compute the constant Cg we
use (6.1), so that

Cg = −|g|K
(
SC |ρg

)
− (1− |g|)K

(
Arcsine |ρg

)
= −|g|K(GW(−1)|GW(g))− (1− |g|)K(UNIF |GW(g)).

The final value of Cg is then calculated with the help of [24, formula (7.5)]. □
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Remark 5. When g ∈ (−1, 1], we may use the alternative formulation (3.41) and
compute the RHS using (4.7) and (4.8).

6.3.3. With DVZ. Let us restrict again to the case g = −1.
Since DG1(GW(−1)) = SC, the measure µ̂ = DVZ(GW(−1)) on [−2, 2] is by

(4.14)

dµ̂(x) =
2 + x

2
dSC(x) =

1

2π
(2 + x)3/2(2− x)1/2dx .

We can then transform the sum rule (3.36) as follows. Assume that µ is a nontrivial
measure supported by [−2, 2] and is such that there exists ν ∈ Ms,1(T) such that
µ = DVZ(ν). We have by (6.1)

K(µ̂|µ) = K(GW(−1)|ν) (6.22)

As before the V-coefficients of ν are real and related to the J-coefficients ak, bk of
µ by (4.13). The sum rule relative to K(GW(−1)|ν) can be rewritten as

K(µ̂|µ) = H(−1)− 1

2
+

1

2

∞∑
k=0

b2k +

∞∑
k=1

a2k − log(a2k)− 1, (6.23)

The RHS is therefore IH(µ) as in the Killip-Simon sum rule, (Theorem 3.1 ), plus
the negative constant H(−1)− 1

2 = 1/2− log 2. Notice that this does not mean that
the RHS may be negative, actually this formula holds for µ in a restricted class.

Alternatively, the sum rule relative to µ̂ may be obtained directly from Theorem
3.1, since

K(µ̂|µ) = K(GW(−1)|ν) = K(DG1(GW(−1))|DG(ν))

=

∫
log

dSC

dDG(ν)
dSC

=

∫
log

dSC

dDVZ(ν)
dSC+

∫
log
(
1 +

x

2

)
dSC(x)

= K(SC |DVZ(ν)) +

∫
log
(
1 +

x

2

)
dSC(x)

and, as in [1, Exercise 2.6.4],∫
log
(
1 +

x

2

)
SC(dx) = − log 2 +

1

2
.

6.4. From UNIF to Pois. In this section we investigate sum rules relative to the
measure Pois(ζ) with ζ ∈ D as given in (3.51). The (reverse) entropy with respect
to the Poisson measure is called the Arov-Krein entropy (see [37]). The Möbius
transform mζ defined in (4.16) maps Pois(ζ) to the uniform measure UNIF. Using
(6.1) and the Szegő sum rule (3.24) shows that

K(Pois(ζ)|ν) =
∞∑
k=0

− log(1− |αk(mζ(ν))|2) . (6.24)

In the following, we analyze this sum rule and obtain alternative expressions for
the RHS.
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Let us recall the connection between the V-coefficients and the Schur function
of a measure [39, Chapter 1]. First, the Caratheodory function of a probability
measure ν on T is defined as

F (z) =

∫
eiθ + z

eiθ − z
dν(θ) = 1 + 2z

∫
dν(θ)

eiθ − z
.

It is analytic on D. The Schur function is then defined from the Caratheodory
function as

f(z) =
1

z

F (z)− 1

F (z) + 1
=

1

z
− 2

z(F (z) + 1)
(6.25)

and conversely we have

F (z) =
1 + zf(z)

1− zf(z)
,

F (z)− 1

z
=

2f(z)

1− zf(z)
. (6.26)

The V-coefficients can be obtained from f by the classical Schur algorithm:

S(g)(z) =
1

z

g(z)− g(0)

1− g(0)g(z)
(6.27)

S[0](g) = g , S[k+1](g) = S ◦ S[k] (6.28)

αk = S[k]f(0) . (6.29)

To tackle the Poisson case, we use an extension of the Schur algorithm named the
Nevanlinna-Pick algorithm that is defined as follows.

For ρ ∈ D \ {0} set, as in [35]

Sρ(g) =
ω(ρ)

mρ

g − g(ρ)

1− g(ρ)g
, ω(ρ) = − ρ

|ρ|
(6.30)

S[0]
ρ (g) = g , S[k+1]

ρ = Sρ ◦ S[k]
ρ (k ≥ 0) , (6.31)

where we recall that mρ is defined in (4.16). To simplify we set S0 = S.
We have then the following new sum rule, whose proof is postponed to Section

7.

Theorem 6.2. For ν a nontrivial measure on T with Schur function f ,

K(Pois(ζ)|ν) = − log(1− |mζ̄ ◦ f(ζ)|2) +
∞∑
k=1

− log(1− |S[k]
ζ (f)(ζ)|2) . (6.32)

Remark 6. The prefactor ω introduced in Nevanlinna-Pick theory for technical
reasons of infinite product convergence can be omitted here. Noticing that Sζ(ωg) =
ωSζ(g) we can set

Ŝζ = ω−1Sζ

and get recursively

Ŝ
[2k]
ζ = S

[2k]
ζ , Ŝ

[2k+1]
ζ = ωS

[2k+1]
ζ

so that the sum in (6.32) also holds for Ŝ
[k]
ζ instead of S

[k]
ζ .

There is another Poisson sum rule which is a direct consequence of a recent
formula of Bessonov [6]. We neither are able to give any probabilistic interpretation
nor to recover it from a pushforward of some other sum rule. The proof of this
Poisson sum rule is also postponed to Section 7.
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Proposition 6.3. For ν a nontrivial measure on T with Schur function f ,

K(Pois(ζ)|ν) = log
|1− ζf(ζ)|2

(1− |ζ|2)(1− |f(ζ)|2)
+

∞∑
k=1

log
1− |ζS[k]

0 (f)(ζ)|2

1− |S[k]
0 (f)(ζ)|2

. (6.33)

The above series has positive terms since

|1− ζf |2 − (1− |ζ|2)(1− |f |2) = |ζ̄ − f |2 ≥ 0,

and 1 − |ζf |2 > 1 − |f |2, so that all the terms in the RHS of (6.33) are positive.
We conclude with the gems corresponding to the above sum rules.

Remark 7. From (6.32) and (6.33) we deduce that the Kullback-Leibler divergence
K(Pois(ζ)|ν) is finite if and only if

∞∑
k=1

|S[k]
ζ (f)(ζ)|2 < ∞,

or equivalently,
∞∑
k=1

|S[k]
0 (f)(ζ)|2 < ∞ .

7. Proofs of Theorem 6.2 and Prop. 6.3

7.1. Proof of Theorem 6.2. The OPUC theory is in many ways an approximation
theory. The information carried by the V-coefficients is the same as the one carried
by the iterated Schur functions evaluated in 0. This relies on the Schur function and
its derivatives at 0. If we are interested in the Schur function and its derivatives
at another point ζ ∈ D we fall into the extension of the OPUC theory called
Orthogonal Rational Functions (ORF) theory. Our main source for the following
developments is [35] (see also [12]).

We start with the sequence of rational functions

1,mζ , (mζ)
2, ..., (mζ)

n, ...

and we apply the Gram-Schmidt orthonormalization in L2(ν) to get

1, φo
1, φ

o
2, ...

we put the superscript o to stress on the ORF aspect. Let (Φo
n) be the corresponding

monic ORF’s.
Actually, we have ∫

Φo
j(z)Φ

o
k(z)dν(z) = κkδjk

and if we set z = m−ζ(τ) we get∫
Φo

j ◦m−ζ(τ)Φ
o
k ◦m−ζ(τ)dν

o(τ) = κkδjk, ,

where νo = ν ◦ m−ζ = mζ(ν) is the pushforward of ν by mζ . Of course the
Φo

k ◦m−ζ ’s are the monic OPUC with respect to νo.
At the level of V-coefficients we have

Φo
k ◦m−ζ(0) = Φo

k(ζ), αk−1(mζ(ν)) = −Φo
k(ζ) . (7.1)
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Now, let us study the relation between the Schur functions. We write F and f
for the Caratheodory and Schur function of ν and F o and fo for the functions of
νo = mζ(ν). With τ = m−ζ(z), we have then

F o(z) = 1 + 2z

∫
dνo(θ)

eiθ − z
= 1 + 2z

∫
1− ζ̄eiθ

eiθ(1− ζ̄z)− ζ − z
dν(θ)

=
1− zζ̄

1 + zζ̄
+

2z(1− τ ζ̄)

(1 + zζ̄)

∫
dν(θ)

eiθ − τ
. (7.2)

Since ∫
dν(θ)

eiθ − τ
=

F (τ)− 1

2τ
, (7.3)

we obtain the relation

F o(z) =
1− zζ̄

1 + zζ̄
+

z(1− τ ζ̄)

τ(1 + zζ̄)
(F (τ)− 1). (7.4)

By (6.25), this implies

fo(z) =
−ζ̄ + (1− τ ζ̄) f(τ)

1−τf(τ)

1 + z(1− τ ζ̄) f(τ)
1−τf(τ)

=
f(τ)− ζ̄

1 + f(τ)(z − τzζ̄ − τ)
=

f(τ)− ζ̄

1− ζ̄f(τ)
(7.5)

or in other words

fo = mζ̄ ◦ f ◦m−ζ . (7.6)

The first V-coefficient is then

αo
0 = fo(0) =

(
mζ̄ ◦ f

)
(ζ) =

f(ζ)− ζ̄

1− ζ̄f(ζ)
.

To compute the higher order coefficients, let us begin with two auxiliary results.
Observing that

Sα(mβ ◦ h)(z) = ω(α)

mα(z)

mβ ◦ h(z)−mβ ◦ h(α)
1−mβ ◦ h(α)mβ ◦ h(z)

=
ω(α)

mα(z)

h(z)−β

1−β̄h(z)
− h(α)−β

1−β̄h(α)

1− h(α)−β̄

1−βh(α)

h(z)−β

1−β̄h(z)

= ε(α, β, h)
ω(α)

mα(z)

h(z)− h(α)

1− h(α)h(z)
(7.7)

with

ε(α, β, h) =
1− βh(α)

1− β̄h(α)
∈ T.

So that, we have obtained the first auxiliary result

Sα(mβ ◦ h) = ε(α, β, h)Sα(h) . (7.8)

The second one is the following

S0(h ◦mγ)(z) =
−1

z

h ◦mγ(z)− h(−γ)

1− h(−γ)h ◦mγ(z)
= −ω(γ)S−γ(h)(mγ(z)) . (7.9)

We have therefore

S0(f
o) = S(mζ̄ ◦ f ◦m−ζ)

(7.9)
= −ω(−ζ)

[
Sζ(mζ̄ ◦ f)

]
◦m−ζ

(7.8)
= ε1Sζ(f) ◦m−ζ , (7.10)
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with ε1 = ω(ζ)ε(ζ, ζ̄, f) ∈ T, hence

αo
1 = S0(f

o)(0) = ε1Sζ(f)(ζ) . (7.11)

This representation can be iterated. Assuming that

S
[k]
0 (fo) = εk

[
S
[k]
ζ (f)

]
◦m−ζ , with |εk| = 1 , (7.12)

we have since Sα(εh) = εSα(h) when ε ∈ T

S
[k+1]
0 (fo) = S0

[
S
[k]
0 (fo)

]
= εkS

[[
S
[k]
ζ (f)

]
◦m−ζ

]
(7.9)
= −ω(−ζ)εk

[
Sζ

[
S
[k]
ζ (f)

]]
◦m−ζ = εk+1

[
S
[k+1]
ζ (f)

]
◦m−ζ . (7.13)

Inductively, (7.12) holds for every k ≥ 0 and

αk(mζ(ν)) = αo
k = S

[k]
0 (f0)(0) = εkS

[k]
ζ (f)(ζ) . (7.14)

This finished the proof, since |εk| = 1. □

7.2. Proof of Proposition 6.3. Let us recall the Bessonov formula of [6, Theorem
1]. Let ν be a probability measure on T with Lebesgue decomposition

dν = gνdz + dνs

(with respect to the uniform measure). The Bessonov formula is

log

∫
dPois(ζ)

dz
dν −

∫
(log gν) dPois(ζ) =

∞∑
k=0

log
1− |ζfk(ζ)|2

1− |fk(ζ)|2
.

Here, we set fk = S
[k]
0 (f). It allows the following slight transformation. Since

UNIF and Pois(ζ) are mutually absolute continuous, it follows that gν
dz

dPois(ζ) is

the density of the absolutely continuous part of ν with respect to Pois(ζ). Hence
we get,

−
∫
(log gν) dPois(ζ) = −

∫
(log gν)

dz

dPois(ζ)
dPois(ζ)−

∫
log

dPois(ζ)

dz
dPois(ζ)

= K(Pois(ζ)|ν)−K(Pois(ζ)|UNIF) .

Besides, using the beginning of the proof of Lemma 1 in [6], we have∫
dPois(ζ)

dz
dν =

1− |ζf(ζ)|2

|1− ζf(ζ)|2
,

Transforming the Kullback-Leibler distance according to (6.1) with the Möbius
mapping mζ , using (3.24) and (3.53), we also have

K(Pois(ζ)|UNIF) = K(UNIF |Pois(ζ)) = − log(1− |ζ|2).

Consequently, we can write

K(Pois(ζ) | ν) = − log(1− |ζ|2)− log
1− |ζf(ζ)|2

|1− ζf(ζ)|2
+

∞∑
k=0

log
1− |ζfk(ζ)|2

1− |fk(ζ)|2

= log
|1− ζf(ζ)|2

(1− |ζ|2)(1− |f(ζ)|2)
+

∞∑
k=1

log
1− |ζfk(ζ)|2

1− |fk(ζ)|2
,

which is the claimed sum rule. □
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8. Appendix

8.1. Analytical proof of a weak version of the HP sum rule. Up to our
knowledge, no analytical proof of the sum rule (3.4) is known. Nevertheless, we
can express the coefficient side in terms of the limiting orthogonal polynomials and
then use some limit theorems in the OP literature to try to recover the entropy of
the spectral side, at least when there are no outliers.

Proposition 8.1. If the probability measure µ = hHPd is such that there exists a
polynomial Q such that Qh and Qh−1 are bounded on the arc (θd, 2π − θd), then

K(HP(d) | µ) =
∞∑
k=0

Hd(γk) < ∞ . (8.1)

It is a weaker form of (3.4) since we impose stronger conditions on µ.

Proof. We will put a superscript d to all quantities relative to the reference measure.
Step 1: Rewriting the coefficient side. The Szegő recursion (2.7) with (3.47)

implies:

Φn(1) =

n−1∏
k=0

(1− γk) , (8.2)

so that
n−1∑
k=0

log |1− γj | = log |Φn(1)| ,

and then
n−1∑
k=0

log
|1− γj |
1− γd

= log
|Φn(1)|
|Φd

n(1)|
. (8.3)

If we go back to orthonormal polynomials, we have

Φn(t) = κ−1
n φn(t), κ−2

n =

n−1∏
k=0

(1− |αk|2)

and since |γk| = |αk|,
n−1∑
k=0

− log
1− |γk|2

1− γ2
d

= 2 log
κn

κdn
. (8.4)

So that

Sn :=

n−1∑
k=0

Hd(γk) = 2 log
κn

κdn
− 2d log

|Φn(1)|
|Φd

n(1)|
. (8.5)

Coming back to the normalized polynomials, we thus obtain,

Sn =

n−1∑
k=0

Hd(γk) = 2(1 + d) log
κn

κdn
− 2d log

|φn(1)|
|φd

n(1)|
. (8.6)

Step 2: Computation of the limit. We use an extension to measures supported on
an arc of the classical Maté-Nevai-Totik result on the full unit circle [40, Theorem
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9.4.1]. The result for an arc is due to Bello Hernandez and Lopez Lagomasino [4].
Theorem 2 therein shows, that if

µ = hHPd

is such that there exists a polynomial Q such that Qh and Qh−1 are bounded on
the arc a = (θd, 2π − θd), then

lim
n→∞

φn(ζ)

φd
n(ζ)

= Da(h, ζ), and lim
n→∞

κn

κdn
= Da(h,∞) ,

uniformly on compact subsets of C̄ \ a. Here, the subscript a stands for ”the arc”.
To understand the limit, we need some more notations (well detailed in [3, Section
2.2] ).

Let

η(τ) = τ +
√

τ2 − 1

(with root such that |η(τ)| > 1) be the conformal mapping of C̄ \ [−1, 1] onto
C̄ \ {z : |z| ≤ 1} such that η(∞) = ∞ and η′(∞) > 0. Set

c = cot(θd/2) .

Let also

ν(ζ) = η

(
i

c

ζ + 1

ζ − 1

)
,

be the conformal mapping from C̄ \ a onto C̄ \ {z : |z| ≤ 1}. In particular

ν(1) = ∞ , ν(∞) = η(i/c) = i
√
1 + 2d .

Following [3, formula (10)], or [4, Lemma 9], we have the indentity

Da(h, ζ) =
D(h, ν(ζ))|D(h, η(i/c))|

D(h, η(i/c))
,

where D is a variant of the famous Szegő function:

D(h, z) = exp

{
1

4π

∫ 2π

0

log[h(τ)]
eiθ + z

eiθ − z
dθ

}
with

cot
τ

2
= c cos θ . (8.7)

This yields, respectively

|Da(h, 1)| = exp

{
− 1

4π

∫ 2π

0

log h(τ)dθ

}
,

|Da(h,∞)| = exp

{
1

4π

∫ 2π

0

log[h(τ)] Re
eiθ + i

√
1 + 2d

eiθ − i
√
1 + 2d

dθ

}
= exp

{
− 1

4π

∫ 2π

0

log[h(τ)]
d

1 + d−
√
1 + 2d sin θ

dθ

}
.
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Going back to (8.6), we see that the limit as n → ∞ exists and is given by

S∞ = lim
n→∞

Sn = 2(1 + d) log |Da(h,∞)| − 2d log |Da(h, 1)|

= − 1

2π

∫ 2π

0

log[h(τ)]
d
√
1 + 2d sin θ

1 + d−
√
1 + 2d sin θ

dθ

= − 1

2π

∫ 2π

0

log[h(τ)]
d cos(θd/2) sin θ

1− cos(θd/2) sin θ
dθ , (8.8)

where τ and θ are connected by (8.7). Actually, splitting this integral in two parts
and using sin(−θ) = − sin θ leads to,

S∞ = − 1

2π

∫ π

0

log[h(τ)]d cos(θd/2)

(
sin θ

1− cos(θd/2) sin θ
− sin θ

1 + cos(θd/2) sin θ

)
dθ

= − 1

2π

∫ π

0

log[h(τ)]
2d cos2(θd/2) sin

2 θ

1− cos2(θd/2) sin
2 θ

dθ .

Now, we have successively

dθ =
(
2c sin2(τ/2) sin θ

)−1
dτ ,

sin θ =

√
sin2(τ/2)− sin2(θd/2)

cos(θd/2) sin(τ/2)
,

1− cos2(θd/2) sin
2 θ =

sin2(θd/2)

sin2(τ/2)
,

so that, using the values of c and sin(θd/2):

S∞ = −
∫ 2π−θd

θd

log[h(τ)](1 + d)

√
sin2(τ/2)− sin2(θd/2)

2π sin(τ/2)
dτ

= −
∫

log h(τ)HP(dτ) = K(HP(d) | µ) .

This ends the proof. □

8.2. Kullback-Leibler distances for mixtures. Suppose µ1 and µ2 are proba-
bility measures on some measurable space S. The following proposition is useful in
the study of sum rules relative to a mixture of µ1 and µ2.

Proposition 8.2. Let τ1, τ2 > 0 with τ1 + τ2 = 1. Then,

K(µi | τ1µ1 + τ2µ2) < ∞, (i = 1, 2). (8.9)

Moreover, for any probability measure µ on S,

K(τ1µ1 + τ2µ2|µ) = τ1K(µ1|µ) + τ2K(µ2|µ)
− τ1K(µ1|τ1µ1 + τ2µ2)− τ2K(µ2|τ1µ1 + τ2µ2), (8.10)

where both sides are simultaneously finite or infinite.

Proof. Since, for i = 1, 2, µi ≪ τ1µ1 + τ2µ2 and

dµi

d(τ1µ1 + τ2µ2)
≤ 1

τi
,

we obtain (8.9).
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For the proof of (8.10) let us begin with a useful (but obvious) remark. If ν1
and ν2 are two probability measures, such that ν1 ≪ ν2, then

K(ν1 | ν2) < ∞ ⇐⇒
∫ ∣∣∣∣log dν1

dν2

∣∣∣∣ dν1 < ∞.

This follows from the inequality u(log u)− ≤ 1/e for u > 0.
Now, if K(τ1µ1 + τ2µ2 | µ) < ∞, then∫ ∣∣∣∣log d(τ1µ1 + τ2µ2)

dµ

∣∣∣∣ d(τ1µ1 + τ2µ2) < ∞

hence for i = 1, 2 ∫ ∣∣∣∣log d(τ1µ1 + τ2µ2)

dµ

∣∣∣∣ dµi < ∞

and ∫
log

d(τ1µ1 + τ2µ2)

dµ
dµi < ∞

and eventually

K(τ1µ1 + τ2µ2 | µ) =
2∑

i=1

τi

∫
log

d(τ1µ1 + τ2µ2)

dµ
dµi

Adding
∑2

i=1 τiK(µi | τ1µ1 + τ2µ2) we get

K(τ1µ1 + τ2µ2 | µ) +
2∑

i=1

τiK(µi | τ1µ1 + τ2µ2)

=

2∑
i=1

τi

∫
log

(
d(τ1µ1 + τ2µ2)

dµ
× dµi

d(τ1µ1 + τ2µ2)

)
dµi

=

2∑
i=1

τiK(µi | µ) .

Conversely, if K(µi | µ) for i = 1, 2 are finite, then K(τ1µ1 + τ2µ2 | µ) is finite by
convexity. □
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