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Abstract

In 1992, M. Wschebor proved a theorem on the convergence of small
increments of the Brownian motion. Since then, it has been extended to
various processes. We prove a version of this theorem for the Hermitian
Brownian motion and the free Brownian motion. Since these theorems
deal with a convergence to a deterministic limit, we prove also the
convergence in distribution of the corresponding fluctuations.
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theorems, Hermite polynomials.
MSC 2020: 15B52, 46L54, 60J65, 33C45, 60F15, 60F17.

1 Introduction

In 1992 [23], Mario Wschebor proved the following remarkable property of
the linear Brownian motion (W (t), t ≥ 0 ;W (0) = 0). If

Wε := ε−1/2 (W (·+ ε)−W (·)) (1.1)

and if λ is the Lebesgue measure on [0, 1], then, almost surely, for every
x ∈ R and every t ∈ [0, 1]:

lim
ε→0

λ{s ≤ t : Wε(s) ≤ x} = tΦ(x) , (1.2)
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where Φ is the distribution function of the standard normal distribution
N (0; 1). Motivated by the study of crossings of stochastic processes in con-
tinuous time, he extended this result to more general smooth approximations
of trajectories.

Let (Wt, t ∈ R) be the bilateral Brownian motion, i.e. (Wt, t ≥ 0) and
(W−t, t ≤ 0) are inedependent Brownian motions starting from 0.

Theorem 1.1 ([23], [4], [25]). Let ϕ : R → R with compact support and
bounded variation satisfying ‖ϕ‖2 = 1 and

W ε
ϕ(t) =

∫ ∞

−∞

1√
ε
ϕ

(
t− s

ε

)
dW (s) , (1.3)

and let

µε =

∫ 1

0
δW ε

ϕ(t)
dt , (1.4)

be the corresponding occupation measure. Then almost surely as ε → 0, µε

converges to the standard normal distribution N (0, 1) for the convergence of
moments, i.e. that for every k

∫
xkdµε(x) =

∫ 1

0
(W ε

ϕ(t))
kdt−→

ε→0
E(N k) , (1.5)

where N (d)
= N (0; 1).

It is a statement which we call law of large numbers (LLN). Actually
(1.1) corresponds to ϕ = 1[−1,0].

Since the Brownian motion W is self-similar (Property P1) and has sta-
tionary increments (P2), it is possible to reduce the study of µε (ε → 0) to
the study of the occupation measure in large time (T := ε−1 → ∞) for the
rescaled process

W 1
ϕ(t) =

∫ ∞

−∞
ϕ(t− s)dW (s)

which does not depend on ε. This moving average process is stationary
Gaussian (it is the Slepian process when ϕ = 1[−1,0]). Moreover, the in-
dependence of increments of W (P3) induces a finite-dependence for W 1

ϕ

(recall that ϕ is compactly supported), so W 1
ϕ is ergodic which allows to

invoke Birkhoff’s theorem.
Later the above result has been extended to other types of processes

(sharing properties P1 and P2), in particular the fractional Brownian motion
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([24], [4], [25]). The Gaussian character of this process allows the use of its
spectral measure instead of the independence of increments.

Corresponding fluctuations have been established :

1√
ε

∫
(g − Eg(N )) dµε (d)−→

ε→0
σ(g)N (1.6)

for a large class of functions g and where σ(g) is an explicit function of g
(see [7] and [25] for a very complete review). The main tool is the Hermite
polynomials.

In the present paper, we extend these results to the matricial Brownian
motion and to the free Brownian motion. For the LLN, the solution is
straightforward. For matrix fluctuations, we need a convenient notion of
Hermite polynomial and for the free fluctuations we will use Tchebyshev
polynomials. In the scalar and free cases, these fluctations are a consequence
of variations of the Breuer-Major theorem.

In Sec. 2 we recall the scalar results, presenting short proofs to prepare
the way for proofs in the free and matricial extensions. In Sec. 3 we establish
the LLN and fluctuations for the free case, since the treatment is rather
easy. The more involved matrix case is handled in Sec. 4 and 5. Eventually,
we consider in Sec. 6 a different model of fluctuations using the Hermite
matrix-variate polynomials.

2 The scalar case

2.1 LLN . Proof of Theorem 1.1.

There are two proofs of the LLN, the historical one and the “ergodic” one.
For the sake of completeness we recall the proof of (1.5) given by Wschebor.

Let us asssume that the support of ϕ is contained in [−a, a]. The first
step consists in stating that all moments of µWε converge in L2 to the
corresponding moments of N . The marginals of W ε

ϕ are standard normal,
hence, for every k

E

(∫ 1

0
W ε

ϕ(t)
kdt

)
=

∫ 1

0
E

(
W ε

ϕ(t)
k
)
dt = E (N k) . (2.1)

Besides

Var

(∫ 1

0
W ε

ϕ(t)
kdt

)
=

∫

[0,1]2
Cov

(
W ε

ϕ(t)
k,W ε

ϕ(s)
k
)
dsdt

= ε2
∫

[0,1/ε]2
Cov

(
W 1

ϕ(t)
k,W 1

ϕ(s)
k
)
dsdt ,
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where in the second identity we use the scaling property

(W ε
ϕ(εt), 0 ≤ t ≤ 1)

(d)
= (W 1

ϕ(t), 0 ≤ t ≤ 1/ε) . (2.2)

Then, we split the domain of integration into {(s, t) ∈ [0, 1/ε]2 : |t−s| > 2a}
and [0, 1/ε]2 ∩ |t− s| ≤ 2a. The first integral is zero since the process W 1

ϕ is
a-dependent, and the second integral is bounded, owing to Cauchy-Schwarz
by

λ{(s, t) ∈ [0, 1/ε]2 : |t− s| ≤ 2a}Var(N k) = O(1/ε) .

Then Borel-Cantelli and the properties of the Brownian paths allow to get
an a.s. convergence. We will not give details here.

2.2 Fluctuations

The fluctuations in the classical scalar case are a consequence of the contin-
uous version of the Breuer-Major theorem . Let us first recall that if F is a
function from R to R such that EF (N )2 < ∞, it has the Hermite expansion

F (x) =
∞∑

n=0

cnHn(x)

where Hn is the Hermite polynomial of degree n. The Hermite rank of F is
the smallest n such that the Hermite coefficient cn is non-zero.

Theorem 2.1. [5] [9, Th. 1.1] Let X be a Gaussian stationary process with
covariance function ρ. Let us assume that F is such that EF (N )p < ∞
for some p ≥ 2 and that its Hermite rank is ℓ ≥ 1. Suppose also that∫
|ρ(t)|ℓdt < ∞. Then the family of processes

Zε(t) := ε1/2
∫ t/ε

0
F (Xs)ds , t ≥ 0 (2.3)

converges, as ε tends to zero to (σW (F )Wt, t ≥ 0), where

• (Wt, t ≥ 0) is a standard Brownian motion,

• σ2
W (F ) = 2

∑∞
q=ℓ c

2
qq!
∫∞
0 ρ(t)qdt

• the convergence in law is fidi if p = 2 and in C(R+) if p > 2.

In the Wschebor original case,

ϕ = 1]−1,0] , ρ(t) = (1− |t|)+ ,

∫ ∞

0
ρ(t)qdt = 1/(q + 1) .
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Corollary 2.2. If F is such that EF (N p) < ∞ for some p ≥ 2 and its
Hermite rank is ℓ ≥ 1, then

(
ε−1/2

∫ t

0
F (W ε

ϕ(s)ds , t ≥ 0

)
(d)−→
ε→0

(
σ2
W (F )Wt , t ≥ 0

)
(2.4)

in the above conditions with

ρ(u) =

∫ ∞

−∞
ϕ(u+ τ)ϕ(τ)dτ . (2.5)

Notice that ρ is defined on R, even and satisfy

ρ(u) ≤ 1 , (2.6)

(use ‖ϕ‖2 = 1 and Cauchy-Schwarz). All along the sequel we will use the
quantity

σ2
k =

∫ ∞

−∞
ρ(t)kdt , (2.7)

so that in the above (2.4)

σ2
W (F ) =

∞∑

ℓ

q!c2qσ
2
q . (2.8)

In [6] there are two proofs of the convergence of one-dimensional marginals
in Th. 2.1 : a classical one and a modern one based on the Fourth Moment
Theorem. Both are based on a spectral representation of the process.

We give here a variation of the proof of Corollary 2.2, starting from the
moving average representation itself and multiple Wiener-Ito integrals.

We will begin with a fixed chaos, i.e. F = Hn, a fixed time t = 1 in (2.3)
and Xs = W 1

ϕ(s). We set ε = T−1 . We have

T−1/2

∫ T

0
Hn

(
W 1

ϕ(t)
)
dt = IWn (fT ) (2.9)

where

fT (t1, . . . , tn) = T−1/2

∫ T

0
ϕ(t− t1) · · ·ϕ(t− tn)dt , (2.10)

and for f symmetric function in L2(Rn
+)

IWn (f) =

∫

Rn
+

f(s1, . . . , sn)dWs1 · · · dWsn . (2.11)

5



This yields

E
(
IWn (fT )

)2
= n!‖fT ‖2 = n!T−1

∫ (∫ T

0
ϕ(t− t1) · · ·ϕ(t− tn)dt

)2

dt1 · · · dtn

= n!T−1

∫

[0,T ]2

(∫
ϕ(t− t1)ϕ(s − t1)dt1

)n

dtds

= n!T−1

∫

[0,T ]2
ρ(t− s)ndtds ,

where we used Fubini. After a change of variable, we conclude that

E
(
IWn (fT )

)2
= 2n!

∫ T

0

(
1− u

T

)
ρ(u)ndu

−→
T→∞

2n!

∫ ∞

0
ρ(u)ndu = n!σ2

n . (2.12)

We apply the Fourth Moment Theorem ([21, Th. 1]) which says that the
convergence in distribution of IWn (fT ) to a normal variable as T → ∞ is
equivalent to the convergence of the fourth moments and also equivalent to
the convergence in L2 to zero of contractions

fT ⊗k fT (ξ1, . . . , ξ2n−2k) =

=

∫
fT (s1, . . . , sk, ξ1, . . . , ξn−k)fT (s1, . . . sk, ξn−k+1, . . . , ξ2n−2k)ds1 . . . dsk ,

for k = 1, . . . , n− 1. But

‖fT ⊗k fT ‖2 = T−2

∫

[0,T ]4
ρ(t− τ)kρ(s− σ)kρ(t− s)n−kρ(τ − σ)n−kdtdsdτdσ ,

which tends to 0 (see p.11-12 in [6]). This proves

IWn (fT )
(d)−→

T→∞
N (0, σ2

n) . (2.13)

In view of proving the fidi convergence of the process

T−1/2

∫ Tu

0
Hn

(
W 1

ϕ(t)
)
dt , u ≥ 0

to the Brownian motion, we apply [22, Th. 1]. We have just to check that
if for a < b

f
[a,b]
T (s1, . . . , sn) :=

1√
T

∫ bT

aT
ϕ(t− s1) · · ·ϕ(t− sn)dt

6



then for u1 < u2 ≤ u3 < u4

E

(
IWn (f

[u1,u2]
T )IWn (f

[u3,u4]
T )

)
−→
T→∞

0 (2.14)

but this expectation is equal to

n!〈f [u1,u2]
T , f

[u3,u4]
T 〉L2 =

n!

T

∫

[Tu1,Tu2]×[Tu3,Tu4]
ρ(t− τ)ndtdτ

=
n!

T

∫

τ∈[Tu1,Tu2],v+τ∈[Tu3,Tu4]
ρ(v)ndvdτ

= n!

∫
λ
(
[u1, u2] ∩ [u3 − vT−1, u4 − vT−1]

)
ρ(v)ndv , (2.15)

where λ is the Lebesgue measure. It is straightforward to see that the limit
is 0. This proves the fidi convergence of increments.

It is straightforward to extend this result to obtain the convergence for a
combination of Hermite polynomials. Eventually tightness is proved in [9].

Remark 1. The above results may be extended to moving average processes
driven by more general processes sharing with Brownian motion properties
P1 and P2 (see Sec. 1), like Hermite processes (see [16]).

3 The free case

A non-commutative probability space is an algebra A of operators on a
complex separable Hilbert space, closed under adjoint and convergence in the
weak operator topology equipped with a trace τ , that is, a linear functional
weakly continuous, satisfying:

• τ(1) = 1

• τ(ab) = τ(ba)

• τ(aa∗) ≥ 0 and τ(aa∗) = 0 iff a = 0 .

The self-adjoint elements of A are called non-commutative random variables.
If a is such a random variable, the linear form on the set of polynomials
defined by

P ∈ C[X] 7→ τ(P (a)) ,

is called the distribution of a. In this case there exists a unique probability
measure µ such that

τ(P (a)) =

∫

R

P (x)dµ(x) .

7



The semi-circle distribution of variance σ2 is

SC(0;σ2)(dx) =
1

2πσ2

√
(4σ2 − x2)+ dx .

If a is a non-commutative SC(0; 1) (SC for short) random variable, its mo-
ments are given by

τ(a2p) =
1

p+ 1

(
2p

p

)
= Cp , τ(a2p+1) = 0 , (3.1)

where Cp is the pth Catalan number. In particular τ(a2) = 1 and τ(a4) = 2.
The free Brownian motion is a family of (S(t), t ≥ 0) of elements of A

such that:

• τ(S(t)) = 0 for all t

• S has free increments

• S(0) = 0 and the distribution of S(t)− S(s) is SC(0; t − s) for s < t.

As in Sec. 1, we can define also a bilateral free Brownian motion, i.e.
(S(t), t ≥ 0) and (S(−t), t ≤ 0) are free Rownina motion which are mu-
tually free.

Such a process is self-similar with index 1/2. Now we define

Sε
ϕ(t) = ε−1/2

∫ ∞

−∞
ϕ

(
t− s

ε

)
dS(s) , (3.2)

where as usual, we assume that the kernel ϕ is bounded, has a support
included in [−a, a] and satisfies ‖ϕ‖2 = 1. In all the sequel, P will be a
polynomial in one variable.

3.1 LLN

Proposition 3.1. For the convergence of moments, we have:

lim
ε

∫ 1

0
P (Sε

ϕ(t))dt =

∫ 1

0
P (x)dSC(x) · 1 . (3.3)

Proof. It is clear that we may suppose that P (x) = xk. We have to prove
that for every j

lim
ε→0

τ

(∫ 1

0

(
Sε
ϕ(t)

)k
dt

)j

= (mk)
j , (3.4)

8



where mk = τ(ak) when a is a SC random variable.
We adapt the proof of the scalar case Sec. 2.1. The basic properties are

scaling and stationarity :

(Sε
ϕ(εt), 0 ≤ t ≤ 1)

(d)
= (S1

ϕ(t), 0 ≤ t ≤ 1/ε) (3.5)

and stationarity, in particular

Sε
ϕ(t)

(d)
= SC . (3.6)

Let us first prove (3.4) for j = 1 and j = 2.
For j = 1 there is no limit to take, since from (3.6)

τ

(∫ 1

0

(
Sε
ϕ(t)

)k
)
dt =

∫ 1

0
τ
((

Sε
ϕ(s)

)k)
ds = mk .

For j = 2, it is enough to prove

lim
ε

τ

(∫ 1

0

(
Sε
ϕ(t)

k − τ
(
Sε
ϕ(t)

k
))

dt

)2

= 0 . (3.7)

We have

τ

(∫ 1

0

(
Sε
ϕ(t)

k − τ
(
Sε
ϕ(t)

k
))

dt

)2

=

= τ

(∫

[0,1]2

(
Sε
ϕ(t)

k − τ
(
Sε
ϕ(t)

k
))(

Sε
ϕ(s)

k − τ
(
Sε
ϕ(s)

k
))

dtds

)

=

∫

[0,1]2
τ
((

Sε
ϕ(t)

k − τ
(
Sε
ϕ(t)

k
))(

Sε
ϕ(s)

k − τ
(
Sε
ϕ(s)

k
)))

dtds

= ε2
∫

[0,1/ε]2
τ
((

S1
ϕ(t)

k − τ
(
S1
ϕ(t)

k
))(

S1
ϕ(s)

k − τ
(
S1
ϕ(s)

k
)))

dtds .

As in the scalar case we split the domain of integration into {(s, t) ∈
[0, 1/ε]2 : |t − s| > 4a} and [0, 1/ε]2 ∩ |t− s| ≤ 4a. The first integral is
zero since when |t− s| > 4a, S1

ϕ(t)
k and S1

ϕ(s)
k are free.

In the second integral we have by Cauchy-Schwarz

|τ
((

S1
ϕ(t)

k − τ
(
S1
ϕ(t)

k
))(

S1
ϕ(s)

k − τ
(
S1
ϕ(s)

k
)))

| ≤

≤
√

τ
(
S1
ϕ(t)

k − τ
(
S1
ϕ(t)

k
)2)
√

τ
(
S1
ϕ(s)

k − τ
(
S1
ϕ(s)

k
)2)

= m2k − (mk)
2 ,

9



so that the second integral is

O
(
λ{(s, t) ∈ [0, 1/ε]2 : |t− s| ≤ 4a}

)
= O(1/ε) ,

and then, after multiplication by ε2 its contribution vanishes.
Assume j ≥ 3. Setting

J ε
j =

(∫ 1

0

(
Sε
ϕ(s)

)k
ds

)j

,

we have
J ε
j − (mk)

j = (J ε
1 −mk)∆

ε
j , (3.8)

where ∆ε
j = Σj−1

r=0J ε
r (mk)

j−r and by Cauchy-Schwarz again

∣∣τ(J ε
j )− (mk)

j
∣∣ ≤

√
τ(J ε

1 −mk)2
√

τ((∆ε
j)

2) (3.9)

Now since the stationary law SC has a compact support [−2, 2], we have for
every p

‖J ε
p ‖ ≤ 2kp , (3.10)

so that, for every ε

τ((∆ε
j)

2) ≤ j222kj (3.11)

and then

τ(J ε
j )− (mk)

j = O

(√
τ (J ε

1 −mk)
2

)

which tends to zero by (3.7).

3.2 Fluctuations

Proposition 3.2. If P is a polynomial of degree d, then

(
ε−1/2

∫ t

0

(
P (Sε

ϕ(s))− τ
(
P (Sε

ϕ(s))
))

ds

)

t≥0

(d)−→
ε→0

(σS(P )S(t))t≥0 (3.12)

where

σS(P )2 =
d∑

1

c2qσ
2
q , (3.13)

with P =
∑d

q=0 cqTq , σq is defined in (2.7) and the convergence is fidi.
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We recall some facts about the convergence of free Wigner chaos asso-
ciated to the free Brownian motion (St)t≥0 (we refer to Biane and Speicher
[8] for stochastic calculus for free Brownian motion). For f ∈ L2(Rn

+) with
some symmetry, we can define a multiple stochastic integral of order n with
respect to S, denoted by ISn (f). In particular, for f = 1⊗n

[0,t]
, ISn (f) = Tn(St)

where Tn is the nth Tchebycheff polynomial (the family of orthogonal poly-
nomials for the semi circular distribution).
Let (fk) be a sequence of L2 functions in R

n
+. In [17], the authors proved

that the convergence in distribution of a sequence (IS(fk))k when k → ∞
to a semi circular distribution is equivalent to the convergence of the fourth
moment to 2 (for a normalized sequence satisfying ||fk||2 = 1) and is also
equivalent to a condition expressed in terms of contractions of the (fk).
As a corollary, they obtain the following Wiener-Wigner transfert principle.

Theorem 3.3. [17, Th. 1.8] Assume that the sequence fk is fully symmet-
ric. Let σ be a finite constant. Then, as k → ∞,

1. E[IWn (fk)
2] → n!σ2 if and only if E[ISn (fk)

2] → σ2 ,

2. If the relations above are verified, then IWn (fk)−→(d)N (0;n!σ2) if and
only if ISn (fk)−→(d) SC(0;σ2) .

Proof of Prop. 3.2 Let us first consider a fixed index n and a fixed time
t = 1. We want to prove the following result (analogous to the Breuer-Major
theorem) :

1√
ε

∫ 1

0
Tn(S

ε
ϕ(s))ds

(d)−→
ε→0

SC(0;σ2
n) . (3.14)

By scaling property,

1√
ε

∫ 1

0
Tn(S

ε
ϕ(s))ds

(d)
=

√
ε

∫ 1
ε

0
Tn(S

1
ϕ(s))ds

and, with ε−1 = T , like (2.11)

T−1/2

∫ T

0
Tn

(
S1
ϕ(t)

)
dt = ISn (fT ) (3.15)

with fT defined in (2.10) and for f ∈ L2(Rn
+)

ISn (f) =

∫

Rn
+

f(s1, . . . , sn)dSs1 · · · dSsn . (3.16)

11



We can now apply the Wiener-Wigner transfer principle Theorem 3.3
to assert that from the convergence (2.13), we deduce the convergence in
distribution (3.14).

Let us extend the above result to a polynomial P (x) =
∑d

1 ckTk(x). We
consider

YT = T−1/2

∫ T

0
P (Sε

ϕ(s))ds =

d∑

1

ckYk,T

where Yk,T is associated with Tk. We know that Yk,T converges in distri-
bution to SC(0;σ2

k). Moreover from the multi-dimensional Wiener-Wigner
transfer theorem [20, Th. 1.6], the vector (Y1,T , . . . , Yd,T ) converges in distri-
bution to (S1, . . . , Sd) where the Si are SC(0;σ2

i ) distributed and free since

they are in distinct chaoses. To show that YT converges to SC(0;
∑d

1 c
2
kσ

2
k)

we have to consider the convergence of moments. Actually

(YT )
j =

(
d∑

1

ckYk,T

)j

= Q(Y1,T , . . . , Yd,T )

for some polynomial Q. From the above convergence, we deduce the conver-
gence of Q(Y1,T , . . . , Yd,T ) to Q(S1, . . . , Sd) = (

∑d
1 ckSk)

j . This means that

YT converges in distribution to SC(0;
∑d

1 c
2
kσ

2
k).

Let us fixed n. In view of proving the fidi convergence of the process

T−1/2

∫ Tu

0
Tn

(
S1
ϕ(t)

)
dt , u ≥ 0

to the free Brownian motion, we refer to Sec. 5.3. We consider four
times u1 < u2 < u3 < u4 and the limit (2.14). Applying again he multi-
dimensional Wiener-Wigner transfer theorem [20, Th. 1.6] we deduce that

(
ISn (f

[u1,u2]
T ), ISn (f

[u3,u4]
T )

)
(d)−→

T→∞
(S1, S2)

where (S1, S2 are free and distributed as SC(0; (u2 − u1),SC(0, ;u3 − u4)).
An extension to a general polynomial and the fidi convergence can be

obtained by a mixing of the above arguments. It is left to the reader. ✷

In particular for ϕ = 1]−1,0] we obtain

Corollary 3.4.

1√
ε

∫ 1

0
Tn

(
S(s + ε)− S(s)√

ε

)
ds

(d)−→
ε→0

SC

(
0;

2

n+ 1

)
. (3.17)
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4 Matricial case : LLN

In this section we consider the spaceHN ofN×N Hermitian matrices and we
denote by tr the normalized trace N−1Tr. We replace the bilateral Brownian
motion of Sec. 2 by a bilateral Hermitian Brownian motion W (N), with

values in the space HN such that (W
(N)
i,j , i ≤ j) are independent bilateral

Brownian motions, complex if i < j and real if i = j with variance

E|W (N)
i,j (t)|2 = |t|/N .

Set

W
ε,N
ϕ (t) = ε−1/2

∫ ∞

−∞
ϕ

(
t− s

ε

)
dW (N)(s) ,

with the usual assumption: ϕ compactly supported and satisfying ‖ϕ‖2 = 1.
For t = 1, the distribution is the classical Gaussian Unitary Ensemble of size
N and variance N−1 which we will denote by GUE(N−1) in the sequel. We
denote by M (N) a random matrix distributed as GUE(N−1). We will often
omit the index ϕ when it will be clear.

Proposition 4.1. Assume that N is fixed. Then, almost surely

∀k ≥ 1 , lim
ε

∫ 1

0

(
W

ε,N(t)
)k

dt = E(M (N))k . (4.1)

The proof is componentwise. We have

[∫ 1

0

(
W

ε,N(t)
)k

dt

]

i,j

=
∑

i2,...,ik−1

∫ 1

0

(
W

ε,N (t)i,i2 . . .W
ε,N(t)ik−1,j

)
dt ,

Each integrand is selfsimilar, 2a-dependent and stationary as in Sec. 1, so

lim
ε

∫ 1

0

(
W

ε,N(t)i,i2 . . .W
ε,N(t)ik−1,j

)
dt = E

(
M

(N)
i,i2

. . .M
(N)
ik−1,j

)
(4.2)

a.s. and we get (4.1) by summation. ✷

Let us now consider the asymptotics N → ∞.

In all the sequel, P will be a polynomial in one variable. Let us consider
the following diagram
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∫ 1
0 P

(
W

ε,N(s)
)
ds ∈ HN

(1):ε→0−−−−−→ E
(
P (M (N))

)
∈ HN

(3):N→∞
y (2):N→∞

y
∫ 1
0 P (Sε(s)) ds ∈ A (4):ε→0−−−−−→

∫ 1
0 P (x)dSC(x) · 1 ∈ A .

(4.3)

Let us give the precise meaning of all these arrows, at least when P is a
monomial P (x) = xk. (1) is the result of Prop. 4.1 and (4) was proved in
Sec. 3.1.

Let us prove (2). Set HN := E
(
P (M (N))

)
and c :=

∫ 1
0 P (x)dSC(x). (2)

means that

lim
N→∞

trHj
N = cj , for all j . (4.4)

Actually,

Hj
N = E

[
P (M

(N)
(1) ) · · ·P (M

(N)
(j) )

]

where M
(N)
(1) , . . . ,M

(N)
(j) are i.i.d. GUE(N−1). From the Wigner’s theorem,

we have then
lim

N→∞
trHj

N = τ [P (S1) · · ·P (Sj)] ,

where S1, . . . , Sj are free and SC. The RHS is clearly cj .
Let us prove (3). Assume ε = 1 to simplify notations. Set

JN
j = tr

(∫ 1

0
W

1,N (s)kds

)j

.

We have to prove that

lim
N

EJN
j = τ

(∫ 1

0
(S1(s)kds

)j

(4.5)

and, if possible

lim
N

J j
N = τ

(∫ 1

0
(S1(s)kds

)j

(a.s.) . (4.6)

Let us begin with j = 1.

Since W
1,N (s)

(d)
= M (N) and S1(s)

(d)
= SC, we have

EJN
1 = tr

∫ 1

0
E

(
W

1,N (s)k
)
= tr E(M (N))k

τ

(∫ 1

0
S1(s)k

)
ds =

∫ 1

0
τ
(
S1(s)k

)
ds = mk , (4.7)
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hence from the convergence (2)

lim
N

EJN
1 = lim

N
Etr

(
M (N)

)k
= mk = τ

(∫ 1

0

(
S1(s)

)k
)
ds . (4.8)

To prove the a.s. convergence for j = 1, we will use the second moment
method. Let us know look for VarJN

1 . From the classical Fubini-like formula

Var

(∫ 1

0
T (s)ds

)
=

∫

[0,1]2
Cov(T (s), T (u))dsdu ,

where T is any L2 process, we get

VarJN
1 =

∫

[0,1]2
Cov

(
trW1,N (s)k, trW1,N (u)k

)
dsdu .

Now, by Cauchy inequality and stationarity

∣∣∣Cov
(
trW1,N (s)k, trW1,N (u)k

)∣∣∣ ≤ Var
(
tr(M (N))k

)
, (4.9)

which tends to 0 as N → 0 (see [2, Sec. 2.1.4]. Actually, since the bound
is O(N−2) the convergence may be strenghtened into an a.s. convergence,
owing to Borel-Cantelli lemma.

For j ≥ 2, let us rewrite JN
j as a multiple integral

JN
j = tr

∫

[0,1]j
W

1,N (s1)
k · · ·W1,N (sj)

kds1 · · · dsj , (4.10)

so that, by Fubini

EJN
j =

∫

[0,1]j
Etr

(
W

1,N (s1)
k · · ·W1,N (sj)

k
)
ds1 · · · dsj , (4.11)

It should be clear that the process W
1,N converges to S1 in the sense that

for every sequence (s1, . . . , sp)

lim
N

Etr[W1,N (t1) · · ·W1,N (tp)] = τ
(
S1(t1) · · ·S1(tp)

)
.

So, we have a convergence pointwise of the integrand in (4.11) to

τ
(
S1(s1)

k · · ·S1(sj)
k
)
.
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Up to an application of the Lebesgue dominated theorem, we could conclude
(again by Fubini)

lim
N

EJN
j =

∫

[0,1]j
τ
(
S1(s1)

k · · ·S1(sj)
k
)
ds1 · · · dsj

= τ

(∫

[0,1]j
S1(s1)

k · · ·S1(sj)
kds1 · · · dsj

)
= τ

(∫

[0,1]
S1(s)kds

)j

.

Now, we have to find a uniform bound for Etr
(
W

1,N (s1)
k · · ·W1,N (sj)

k
)
.

By Holder inequality

|Etr(A1 . . . Aj)| ≤
j∏

r=1

(
Etr(Ar)

j
)1/j

,

so that

|Etr
(
W

1,N (s1)
k · · ·W1,N (sj)

k
)
| ≤

j∏

1

(
Etr(W1,N (sr)

kj
)1/j

= Etr(MN )kj

which is bounded in N since it converges to τ
(
(S1)kj

)
.

5 Matricial case : fluctuations

As seen in the above sections, the Hermite polynomials in the scalar case and
the Tchebycheff polynomials in the free case play a major role for the study
of fluctuations. In the matricial case, we will use Hermite trace polynomials
which are matrix valued of matrix variate. They are defined in the next
subsection. This can be considered as an intermediate link between the
scalar and free cases.

Besides, it is also possible to consider polynomials which are scalar valued
of matrix variate. They are studied in Sec. 6.

5.1 Hermite polynomials for Hermitian Brownian motion

This section is a summary of the paper of Anshelevich and Buzinski [3] in
which the authors define the Hermite trace polynomials for the Hermitian
Brownian motion.
First, let us recall what is known for the real Brownian motion (Bt)t≥0.
There exists polynomials Hn(x, t) such that for all n, Hn(Bt, t) is a martin-
gale for the filtration induced by B. More precisely, Hn(x, t) = tn/2Hn(

x√
t
)
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where Hn is the classical Hermite polynomial of degree n. Moreover, we
have the chaos representation

Hn(Bt, t) =

∫

[0,t]n
dBt1 . . . dBtn .

Let (W (N)(t)) be a N×N Hermtian Brownian motion. We cannot find a
polynomial P (x, t) of degree n in x such that P (W (N)(t), t) is a martingale,
for n ≥ 3. For example, for n = 3, a martingale M (N) involving (W (N)(t))3

is given by :

M (N)(t) = (W (N)(t))3 − t(2W (N)(t) + tr(W (N)(t))) . (5.1)

Note that for N = 1, we recover the classical Hermite polynomial H3(x, t) =
x3 − 3tx.

Therefore, we need to replace the class of polynomial by a larger class of
trace polynomials. Informally, a trace polynomial in a matrix indeterminate
X is a linear combination of product of the form Xk

∏
i tr(X

li).
From now in this section, we denote by W a N×N Hermitian Brownian

motion as W (N) in Sec. 4 but we drop the superscript N for simplicity. For
h ∈ L2(R), we set

W (h) =

∫ ∞

−∞
h(t)dW (t) .

In [3], the authors define trace polynomials in GUE matrices. A trace poly-
nomial in W (h1) . . . ,W (hn) is indexed by α ∈ S0(n), where S0(n) denotes
the set of permutations of [0, n] := {0, 1, . . . , n} and is defined by

Tr α(W (h1) . . . ,W (hn)) =

∏

i in the cycle starting with 0

W (hi)
∏

others cycles

Tr




∏

i in the cycle

W (hi)


 . (5.2)

The matricial α-Hermite polynomial Hα(Wt) is defined as linear combina-
tions of trace polynomial Trη(Wt, . . . ,Wt), where η is a contraction Cπ(α)
of α. See [3, Def. 3.13, Cor. 6.4]. We give some examples of Hermite poly-
nomials in Prop. 5.1.
We now precise the definition of the contractions.

Definition. (see [3, Definition 3.9] Let π be a partition of [n] := {1, . . . , n}
with blocks of size 1 or 2, i.e. π ∈ P1,2(n) and denote supp(π) = [n]\Sing(π)
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the set of the 2-blocks. For α ∈ S0(n) and π ∈ P1,2(n), we define

Cπ(α) =

(
1

N

)a(α,π)

βπ(α)

βπ(α) = P
[0,n]\supp(π)
[0,n−2l] (πα)

∣∣
supp(π)c

, (5.3)

where

1. l is the number of 2-blocks of π.

2. For A,B two sets of integers with the same cardinal, PA
B denotes the

unique order-preserving bijection from A to B and the corresponding
bijection on the set of permutations on A, resp. on B. 1

3. a(α, π) = cyc0((πα)|supp(π)c−cyc0(πα)+l and cyc0 denotes the number
of cycles of a permutation on [0, n], not containing 0 .

For α ∈ S0(n), u ∈ R and M ∈ HN , set

H̃α(M,u) =
∑

π∈P1,2(n)

(−1)n−|π|
(

1

N

)a(α,π)

ulTrβπ(α) (M, . . . ,M) (5.4)

where in the last Tr there are n− 2l arguments.
The α Hermite polynomial is defined by

Hα(W (h)) = H̃α(W (h), ‖h‖2) , (5.5)

Remark 2. Note that if π has only 2-cycles, Cπ(α) is equal to (0) up to
multiplicative constant.

Some examples are in the following proposition

Proposition 5.1. Let αn = (01 . . . n). The first H̃αn are :

H̃α1(M,u) = −M ,

H̃α2(M,u = M2 − u ,

H̃α3(M,u) = −M3 + 2uM + utrM ,

H̃α4(M,u) = M4 − 2uMtrM − 3uM2 − utrM2 + (2 +N−2)u2 .

Let us notice that for N = 1 we recover the classical Hermite polynomi-
als, except for the sign. This comes from the definition (5.5) which, in [3],
obeys algebraic motivations.

1Example ([3, Ex. 3.8]): For α = (13524) and S = {2, 5}, α|Sc = (134) and

P
[5]\S

[3)
α|Sc = (123).
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5.2 Proof of Proposition 5.1

In the following we set q = 1/N , c = a(α, π) and β = P
[0,n]\supp(π)
[0,n−2l] (πα)

∣∣
supp(π)c

.

For n = 1, P1,2(n) = (1), l = 0, n − |π| = 1, πα = (01), β = (01),Trβ =
M, qc = 1.

For n = 2 we have

π 2− |π| πα β Trβ l qc

id 2 (012) (012) M2 0 1

(12) 1 (02)(1) (0) 1 1 1

For n = 3

π 3− |π| πα β Trβ l qc

id 3 (0123) (0123) M3 0 1

(1)(23) 2 (013)(2) (01) M 1 1

(2)(13) 2 (03)(12) (0)(1) TrM 1 N−1

(12)(3) 2 (023)(1) (01) M 1 1

For n = 4

π 4− |π| πα β Trβ l qc

id 4 (01234) (01234) M4 0 1

(1)(23)(4) 3 (0134)(2) (012) M2 1 1

(1)(2)(34) 3 (0124)(3) (012) M2 1 1

(1)(24)(3) 3 (014)(23) (01)(2) MTrM 1 N−1

(14)(2)(3) 3 (04)(123) (0)(12) TrM2 1 N−1

(13)(2)(4) 3 (034)(12) (02)(1) MTrM 1 N−1

(12)(3)(4) 3 (0234)(1) (012) M2 1 1

(12)(34) 2 (024)(1)(3) (0) 1 2 1

(13)(24) 2 (03214) (0) 1 2 N−2

(14)(23) 2 (04)(13)(2) (0) 1 2 1

We now give some moment formulas for tracial polynomials of Hermitian
Brownian and for products of Hermite polynomials :

Proposition 5.2. See [3, Prop. 6.1] Let {D1, . . . Dn} be non random Her-
mitian matrices. Then for even n, for α ∈ S0(n),

E(Trα(W (h1)D1, . . . ,W (hn)Dn)) =

1

Nn/2

∑

π∈P2(n)

Cπ(h1 ⊗ . . .⊗ hn)Trπα(D1, . . . ,Dn). (5.6)
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where P2(n) is the set of pair partitions of [n] and

Cπ(h1 ⊗ . . .⊗ hn) =
∏

(i,j) pair of π

〈hi, hj〉.

Proposition 5.3. See [3, Prop. 5.15]. For αn = (01 . . . n), k ∈ N,

E(Hαn(W (h1)) . . . Hαn(W (hk))) =∑

π∈P2(n,...,n)

Cπ(αnk) Cπ(h
⊗n
1 ⊗ . . .⊗ h⊗n

k ) =

∑

π∈P2(n,...,n)

(
1

N

)nk/2−cyc0(πα)

Cπ(h
⊗n
1 ⊗ . . .⊗ h⊗n

k ) . (5.7)

where P2(n, . . . , n) is the set of inhomogeneous pair partitions of [nk], mean-
ing that if (i, j) is a pairing of the partition with i < j, then i ≤ pn < j for
some 1 ≤ p ≤ k − 1 (i.e. considering the set nk as k blocks of n elements,
any pairing involves two elements of different blocks).
In (5.7), with a slight abuse of notation, Cπ(αnk) denotes the constant K
in the writing of the partition Cπ(αnk) = K(0) and the LHS is equal to the
RHS multiplied by the identity matrix.

5.3 Fluctuations

Let (Wt, t ∈ (−∞,∞)) be as above. Let ϕ : R → R compactly supported
with bounded variation and satisfying ‖ϕ‖2 = 1. Set ϕt(s) = ϕ(t − s). We
now consider the stationary process with value in HN of N ×N defined by :

Xt =

∫ ∞

−∞
ϕ(t− s)dWs :=

∫ ∞

−∞
ϕt(s)dWs = W (ϕt)

Notice that
〈ht, hs〉 = ρ(t− s) (5.8)

where ρ(t) =
∫
ϕ(t+ u)ϕ(u)du (2.5).

Let Hαn the Hermite polynomial on HN with αn = (01 . . . n) ∈ S0(n).
As in the scalar case, we are looking for a CLT for the random matrix :

MT =
1√
T

∫ T

0
Hαn(Xs)ds

as T tends to ∞. The main result of this section is :
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Theorem 5.4. As T → ∞, MT converges in distribution to a Gaussian
random matrix M∞ whose law is characterized by the following:

1) It is invariant by conjugation which implies that in the decompostion
M∞ = U∗DU , the matrix U of eigenvectors is Haar distributed and
independent of the matrix D of eigenvalues.

2) The law of the spectral distribution

µM∞ =
1

N

N∑

i=1

δλi(M∞)

is given by its moments : for k even,

E

(∫
xkdµM∞(x)

)
= E(tr(Mk

∞)) = Kk,n,Nσk
n (5.9)

where σ2 is defined in (2.7),

• Kk,n,N =
∑

π∈Πn,k
Cπ(αnk) where Cπ is defined in (5.3)

• Πn,k is the set of partitions π of P2(n, . . . , n) in inhomogeneous
pairs such that if i1 and i2 are in the same block of size n, then
π(i1) and π(i2) are also in the same block.

3) We have

M∞
(d)
= σn (an,NG+ bn,NξIN ) (5.10)

where

• G
(d)
= GUE(N−1), ξ

(d)
= N (0;N−2) (real) and G and ξ are inde-

pendent,

• the coefficients an,N and bn,N are defined via the permutation
α̃ = (0)(1 . . . n)(n+ 1 . . . 2n) by

a2n,N =
1

Nn

∑

π∈P ′
2(n,n)

N cyc(πα̃)

b2n,N =
1

Nn

∑

π∈P2(n,n)\P ′
2(n,n)

N cyc(πα̃)

(5.11)

(5.12)

with

P ′
2(n, n) = {π ∈ P2(n, n) : n and 2n are in the same cycle of πα̃} .
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Remark 3. It could seem natural to tackle this problem with the tools of
Wiener chaos, as in the scalar case. Unfortunately, we did not find any ready-
made version of chaos for matrix-valued Brownian motion. It is remarkable
that in [17, Remark 1.40], the authors leave to the reader this “involved”
task.

Proof: The convergence of MT to a Gaussian random matrix follows
from Breuer-Major CLT theorem for non-linear functional of stationary
Gaussian process (extended to multidimensional Gaussian process by Ar-
cones). Indeed, for any non random Hermitian matrix A, Tr (AMT ) can be

written as 1√
T

∫ T
0 F (Xs)ds for some function F from HN to R, centered for

the multidimensional stationary Gaussian process (Xt), and thus converges
to a centered Gaussian variable of variance σ2(A,n,N). It follows that MT

converges to a Gaussian Hermitian matrix.
1) Since the distribution of (Xt)t≥0 is invariant by unitary conjugation, it

follows that for all unitary matrix U , MT
(d)
= UMTU

∗ and therefore M∞
(d)
=

UM∞U∗. We deduce (see [2, Cor. 2.5.4]) that the eigenvectors of M∞ are
Haar distributed and are independent of the eigenvalues.

2) Let us compute for k ≥ 1 the moment
∫

xkdµM∞(x) = E(tr(Mk
∞)) ,

and prove (5.9).
We have

Mk
T = T−k/2

∫

[0,T ]k
Hα(Xt1)Hα(Xt2) . . . Hα(Xtk )dt1 · · · dtk . (5.13)

From (5.7),

EMk
T =

∑

π∈P2(n,...,n)

Cπ(αnk) T
−k/2

∫

[0,T ]k
Cπ(h

⊗n
t1 ⊗ . . .⊗ h⊗n

tk
)dt1 · · · dtk .

(5.14)

From (5.8) we have

Cπ

(
h⊗n
t1

⊗ · · · ⊗ h⊗n
tk

)
=

∏

1≤i<j≤k

ρ(ti − tj)
nij (5.15)

where nij denotes the number of pairs consisting in an element of the block
i and an element of block j. Of course 0 ≤ nij ≤ n. If nij = n the blocks
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i and j are completely connected. Let us denote by J those pairs of blocks
such that nij = n and let |J | be its cardinal. We can split

∫

[0,T ]k
Cπ

(
h⊗n
t1 ⊗ · · · ⊗ h⊗n

tk

)
dt1 . . . dtk =

∫ ∏

(i,j)∈J
ρ(ti − tj)

nij1[0,T ](ti)dti1[0,T ](tj)dtj

×
∫ ∏

(i,j)/∈J
ρ(ti − tj)

nij

k−2|J |∏

s=1

1[0,T ](ts)dts . (5.16)

The first factor is actually

(∫

[0,T ]2
ρ(t2 − t1)

ndt1dt2

)|J |

=

(∫

[−T,T ]
ρ(t)n(T − |t|)dt

)|J |

, (5.17)

which implies

lim
T→∞

T−|J |
(∫

[0,T ]2
ρ(t2 − t1)

ndt1dt2

)|J |

=

(∫
ρ(t)ndt

)|J |
. (5.18)

In the second factor, if the complement of J is not empty, we denote by
r = k − 2|J | be the number of remaining blocks.

We can consider a graph G whose vertices are the r variables of integra-
tion and whose edges are the pairs (k, ℓ) such that nkℓ 6= 0. Each vertex has
a degree greater or equal to 2, which implies that the number of edges is
greater or equal to r. If G is connected, we consider a covering tree. It has
r − 1 edges, and each one can be identified to a linear form

(i, j) ∼ (t1, . . . , tr) 7→ ti − tj .

If these forms are denoted by ℓ1, . . . , ℓr−1, the kernel of linear map

(t1, . . . , tr) 7→ (ℓ1, . . . , ℓr−1)

is the diagonal t1 = · · · = tr, hence the rank of the linear map is r − 1.
Adding one coordinate, say tr, we can perform the change of variable

(t1, . . . , tr) 7→ (u1 = ℓ1, . . . , ur−1 = ℓr−1, ur = tr) .
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Since its Jacobian is 1 we get

∫ ∏

(i,j)/∈J
ρ(ti − tj)

nij

r∏

k=1

1[0,T ](tk)dts ≤
∫ ∏

(i,j)/∈J
ρ(ti − tj)

r∏

s=1

1[0,T ](ts)dts

≤
∫

Rr−1×[0,T ]

(
r−1∏

s=1

ρ(us)dus

)
dur ≤ T

(∫
ρ(t)dt

)r−1

.

Now, if G has c > 1 connected components, we cinder each one separately
and we conclude

∫ ∏

(i,j)/∈J
ρ(ti − tj)

nij

r∏

s=1

1[0,T ](tk)dts ≤ T c

(∫
ρ(t)dt

)r−c

. (5.19)

Actually , since each component has at least 3 vertices, we have 3c ≤ r and
we conclude

• If |J | = k/2 then

lim
T

T−k/2

∫

[0,T ]k
Cπ

(
h⊗n
t1 ⊗ · · · ⊗ h⊗n

tk

)
dt1 . . . dtk =

(∫
ρ(t)ndt

)k/2

(5.20)

• If |J | < k/2, then

T−k/2

∫

[0,T ]k
Cπ

(
h⊗n
t1 ⊗ · · · ⊗ h⊗n

tk

)
dt1 . . . dtk =

O(T c−k/2+|J |) = O(T c−r/2) = O(T−r/6) . (5.21)

Therefore, the only pair partitions giving a non zero term as T → +∞ are
the inhomogeneous partitions for which nij = n for all i 6= j, thus a partition
of Πn,k.

3) It is known that a random symmetric isotropic real Gaussian matrix
is of the form aG++bηIN with

• G
(d)
= GOE(N−1),

• η
(d)
= N (0; 1) independent of G,

• a, b real,
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see for instance [11, Lemma 4] or [10, Sec. 2.1]. The proof is easily extended
to the Hermitian case with GUE instead of GOE. Moreover, owing to the
expression of moments (5.9), it is clear that the coefficients a and b are
proportional to σn, so that an,N and bn,N do not depend on ρ and are
purely combinatorial.

To characterize an,N and bn,N , it is natural to compute the distribution
of TrAM∞ for A a Hermitian test matrix. On the one hand it is Gaussian
with variance

σ2
n,N (A) = σ2

n

(
a2n,N tr(A2) + b2n,N(tr(A))2

)
. (5.22)

On the other hand TrAM∞ as the limit of the Gaussian stationary process
MT has a variance

σ2
n,N (A) = 2

∫ ∞

0
ρA,n,N(t)dt

ρA,n,N(t) = E (Tr (AHα(Xt)Tr (AHα(X0)) .

(5.23)

(5.24)

A careful computation could make appear the terms tr(A2) and (trA)2.
From the definition (5.5) of Hermite polynomials as linear combination of
tracial monomials of Hermitian BM and formula (5.6) for the moments of
tracial monomials, we can deduce that ρA,n,N (t), as a function of A, is a lin-
ear combination (depending on n,N, t) of terms of the form Trβ(D1, . . . ,D2n)
for β ∈ S0(2n) and the matrices Di are equal to IdN except for two indexes
where D = A. It follows that ρA,n,N(t) is a linear combination of (TrA)2

and Tr (A2). Moreover, the coefficients of this combination must be propor-
tional to ρ(t)n. In the expansion of ρA,n,N (t) we have to isolate the terms
proportional to tr(A2)ρn(t) and (trA)2ρn(t), respectively.

If we plug the expansions (5.5) of Hα(Xt) and Hα(X0) in (5.24) we see
that ρA,n,N(t) is as um of terms like

ETr
[
ATr βπ(α)(W (h), . . . ,W (h))ATr βπ′(α)(W (h0) . . .W (h0))

]

and using the definition (5.2) this can be written as

E


Tr


AW (h)uAW (h0)

u′
∏

i

Tr [W (h)vi ]
∏

j

Tr
[
W (h0)

v′j
]



 ,

for convenient u, u′, vi, vj . Now, owing to (5.2) again, it is of the form

ETr α̃ (X, . . . ,X,XA, Y, . . . , Y, Y A,X, . . . ,X, Y, . . . , Y ) (5.25)

where
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• X = W (h), Y = W (h0),

• there are r − 1 successive X, then XA, then s − 1 successive Y then
Y A ...

•

α̃ = (0)(1 . . . r)(r + 1, . . . , r + s)γγ′

with γ acting on the last X’s and γ′ acting on the last Y ’s.

If we now apply the formula (5.6) we see that the occurence of ρ(t) comes
from the contractions Cπ. If we want to get ρ(t)n, the number of variables
needs to be 2n, π must have no singleton, and also r = s = n and then
γ = γ′ = ∅. Eventually

α̃ = (0)(1 . . . n)(n+ 1, . . . , 2n) , π ∈ P2(n, n) .

Under this condition, for the term Trπα̃[(IN , . . . , IN , A, IN , . . . , IN , A) of
(5.6) there two cases:

• if n and 2n are in the same cycle of πα̃ and we get a term in Tr (A2)
if with coefficient N cyc(πα̃)−1 i.e. a term in tr(A2) with coefficient
N cyc(πα̃)

• ortherwise we get a term in (TrA)2 with coefficient N cyc(πα̃−2 i.e. a
term in (trA)2 with coefficient N cyc(πα̃).

A comparison with (5.22) ends the proof. ✷.

5.4 Example

We will give the values of an,N and bn,N for n = 2 and n = 3.

Proposition 5.5. For n = 2, 3 the coefficients in the decomposition (5.10)
are

a2,N = b2,N = 1

a23,N = 1 + 3N−2 , b23,N = 2 . (5.26)

Proof for n = 2
We have α̃ = (0)(12)(34), π ∈ P2(2, 2)

π πα̃ cyc0 P ′

(13)(24) (0)(14)(23) 2 0

(14)(23) (0)(13)(24) 2 1
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Proof for n = 3
We have α̃ = (0)(123)(456), π ∈ P2(3, 3)

π πα̃ cyc0 P ′

(14)(25)(36) (0)(153426) 1 1

(14)(26)(35) (0)(16)(25)(34) 3 0

(15)(24)(36) (0)(14)(26)(35) 3 0

(15)(26)(34) (0)(163524) 1 1

(16)(24)(35) (0)(143625) 1 1

(16)(25)(34) (0)(15)(24)(36) 3 1

5.5 Asymptotics N → ∞
5.5.1 The coefficients Kk,n,N

Let us recall that

Kk,n,N =
∑

π∈Πn,k

Cπ(αnk) where Cπ(αnk) =

(
1

N

)nk/2−cyc0(παnk)

.

Proposition 5.6. 1. We have

cyc0(παnk) ≤
nk

2
(5.27)

with equality if and only if the partition π in Πn,k is non crossing, i.e.
the partition on the n-blocks of π is a non-crossing partition of [k] and
satisfies the condition (5.29) below.

2.

lim
N

Kk,n,N = Ck/2. (5.28)

where Cn denotes the nth Catalan number.

Proof: Let k even and π ∈ Πn,k.
We denote by 1̄, . . . , k̄ the successive blocks of [nk] (j̄ = {(j−1)n+1, . . . , jn}).
A partition π ∈ Πn,k induces a pair partition π̄ on the k blocks j̄ in k/2
pairs. Let

α = αnk = (01 . . . kn)
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and denote by C0 the cycle of παnk contening 0. Then, nk belongs to C0.
Therefore, the number of elements of [nk], not belonging in C0 is less than
nk − 1, and if πα has no singletons,we have :

cyc0(παnk) < nk/2 .

Assume now that παnk has a singleton. It implies that the partition π̄
has an interval {j̄, j + 1} for some 1 ≤ j ≤ k − 1 and (jn, jn + 1) ∈ π. The
singleton of παnk is {jn} and there is no other singletons among the interval
[(j − 1)n+1, (j +1)n− 1]. The restriction of παnk on this interval has thus
at most n cycles and the maximum of n cycles occurs with a singleton and
n− 1 pairs.
If the restriction of παnk on the above interval has a pair (x, y) with x < y,
it means that x ≤ jn− 1, y ≥ jn+2 and π(x+1) = y, π(y+1) = x. Thus,
the only possibility for the restriction of π to have n cycles (a singleton and
(n− 1) pairs) is that π on this interval is non crossing, i.e. satisifies :

π((j − 1)n + r) = (j + 1)n + 1− r, 1 ≤ r ≤ n;

We now prove that (j − 1)n and (j + 1)n are in the same cycle Cj of παnk.
Note that a := (πα)(−1)((j− 1)n) does not belong to (j̄ ∪ j + 1). The image
πα((j − 1)n) = π((j − 1)n + 1) ∈ (j̄ ∪ j + 1). The only way to pass from
πα((j − 1)n) to a in the cycle Cj (i.e. to exit j̄ ∪ j + 1) is to pass by the
point (j + 1)n. We can thus ”identify” (j − 1)n and (j + 1)n to count the
number of cycles. Thus, we are led to the study of the restriction of π on
[kn]\(j̄ ∪ j + 1) with α̃nk = (012 . . . (j− 1)n (j+1)n+1 . . . kn). A recursive
argument on k gives cyc0(παnk) ≤ nk/2 . Moreover, the partitions π giving
the maximum number of cycles nk/2 are those for which π̄ is non crossing
(recall than a NC partition contains at least one interval (j̄, j + 1)) and
satisfies the following condition : if (j̄, l̄), j < l is a pair of π̄, then,

π((j − 1)n + r) = ln+ 1− r, 1 ≤ r ≤ n. (5.29)

For such a partition, limN Cπ(αnk) = 1 and limN Cπ(αnk) = 0 in the other
cases. The number of partitions π in Πn,k giving the maximal number of
cycles is thus equal to the number of non crossing pair partitions π̄, that is
the Catalan number Ck/2, proving (5.28). ✷

5.5.2 The coefficents an,N and bn,N

To echo the asymptotics of the moments of µM∞ given in (5.9)-(5.28), we
have the following statement on the asymptotics of coefficients an,N and
bn,N of the decomposition (5.10) and its consequence on µM∞ .
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Proposition 5.7. 1. The coefficients an,N and bn,N satisfy :

a2n,N = 1 +O(N−1) , b2n,N = n− 1 +O(N−1) . (5.30)

2. As N → ∞, the empirical spectral distribution of M∞ converges in
distribution to SC(0;σ2

n).

The first statement will be a consequence of the following Lemma 5.8.
For the second one, it is enough to say that for fixed n,

• the empirical spectral distribution of σnbn,NξIN converges to δ0,

• the empirical spectral distribution of σnan,N GUE(N−1) converges to
SC(0;σ2

n)

• σnbn,NξIN and σnan,N GUE(N−1) are independent.

Proof of Proposition 5.7 1

Going back to the end of Sec. 5.3, we see that if π ∈ P2(n, n), then πα̃
has no singleton. Therefore

Trπα̃(IN , . . . , IN , A, IN , . . . , A) = O(Nn)

and the term of order Nn is obtained when πα̃ is a product of n pairs (×(0)).
We study those pairings π such that πα̃ = (0)

∏n
i=1 τi where τi is a pair (or

a transposition). Two cases appear :
1) one of the τ is (n, 2n). In this case,

Trπα̃(IN , . . . , IN , A, IN , . . . , A) = Nn−1Tr (A2) = Nntr(A2).

2) n and 2n are not in the same pair of π. Then,

Trπα̃(IN , . . . , IN , A, IN , . . . , A) = Nn−2(Tr (A))2 = Nn(tr(A))2.

Proposition 5.8. 1) There is only one partition π, the non crossing parti-
tion π = (1, 2n)(2, 2n − 1) . . . (n, n+ 1) of P2(n, n), such that

Trπα̃(IN , . . . , IN , A, IN , . . . , A) = Nntr(A2).

2) There are n− 1 pair partitions π ∈ P2(n, n) such that :

Trπα̃(IN , . . . , IN , A, IN , . . . , A) = Nn(tr(A))2.

Proof of Proposition 5.8
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1. We assume that πα̃ = (1, j1)(2, j2) . . . (n− 1, jn−1)(n, 2n). Note that

α̃−1 = (0)(n (n− 1) . . . 1)(2n (2n − 1) . . . n+ 1).

We have sucessively

π(1) = πα̃α̃−1(1) = πα̃(n) = 2n

π(2n) = πα̃α̃−1(2n) = πα̃(2n − 1) , (5.31)

but since π is a pairing π(2n) = 1 so that

πα̃(2n − 1) = 1 , (5.32)

which implies j1 = 2n − 1. Then, similarly

π(2) = πα̃α̃−1(2) = πα̃(1) = j1 = 2n − 1

2 = π(2n − 1) = πα̃α̃−1(2n − 1) = πα̃(2n − 2)

j2 = 2n− 2 (5.33)

and so on. Eventually

π = (1, 2n)(2, 2n − 1) . . . (n, n+ 1) (5.34)

so that there is one and only one π giving the dominant term of tr(A2).

2. We now assume that

πα̃ = (i1, j1) . . . (in−2, jn−2)(n, jn−1)(in, 2n)

We set
π(n) = πα̃(n− 1) =: k ∈ [n+ 1, 2n]

If k = n+ 1 we have

π(n) = n+ 1 = πα̃α̃−1(n) = πα̃(n− 1)

π(n+ 1) = n = πα̃α̃−1(n+ 1) = πα̃(2n)

This is a contradiction since, by assumption, (n, 2n) is not a pair of πα̃.

Therefore, k = n+ 1 + j for j ∈ [1, n − 1] and we have successively:

π(n) = n+ 1 + j = πα̃α̃−1(n) = πα̃(n− 1)

π(n+ j + 1) = n = πα̃α̃−1(n+ j + 1) = πα̃(n+ j)
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Thus (n, n+ j) ∈ πα̃ and

π(1) = πα̃α̃−1(1) = πα̃(n) = n+ j.

implying that 1 = π(n + j) = πα̃(n + j − 1).
Thus π(2) = πα̃(1) = n+ j − 1. We obtain successively:

π(l) = πα̃α̃−1(l − 1) = n+ j − l + 1, l ≤ j

· · ·
π(j) = πα̃α̃−1(j − 1) = n+ 1

π(n+ 1) = j = πα̃α̃−1(n+ 1) = πα̃(2n)

π(j + 1) = πα̃α̃−1(j + 1) = πα̃(j) = 2n

π(2n) = j + 1 = πα̃α̃−1(2n) = πα̃(2n − 1)

· · ·
π(n− 1) = πα̃α̃−1(n− 2) = n+ j + 2 .

and eventually

π = (1, n+j)(2, n+j−1) . . . (j, n+1)(j+1, 2n)(j+2, 2n−1) . . . (n, n+j+1) .

In conclusion, there are exactly n − 1 pairings giving the dominant
term in tr(A)2.

6 Matrix-variate Hermite polynomials

6.1 Introduction

In this section, we consider two models of matrix valued processes X(t)
obtained by smoothing a matrix Brownian motion. Like in the previous

sections, we will study the asymptotic behavior of ε−1/2
∫ 1/ε
0 F (X(t)dt, but

now F will be a convenient real function such that F (X(t)) is centered.
The classical key is the decomposition according to some Hermite-like basis,
called the matrix-variate Hermite polynomials.

In the first model, we consider the bilateral Brownian motion W(N)(t)
on the space SN of N ×N symmetric real matrices (a.k.a. GOE(1)) and a
smoothing real function ϕ such that ‖ϕ‖2 = 1.

In the second model, we consider the bilateral Brownian motion Wℓ,N (t)
on the space R

ℓ×N of ℓ × N rectangular real matrices and a smoothing
function Φ living in the space of N ×N matrices and satisfying

∫
Φ(s)TΦ(s)ds = IdN . (6.1)
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The smoothed processes are defined respectively by

X(t) =

∫ ∞

−∞
ϕ(t− s)dW(N)(s) ∈ SN ,

X(t) =

∫ ∞

−∞
dW(ℓ,N)(s)Φ(t− s) ∈ R

ℓ×N .

(6.2)

(6.3)

These processses are stationary Gaussian and the covariances are given re-
spectively by

E (X(t2)ijX(t1)rs) = ρ(t2 − t1) (δirδjs + δisδjr) , (6.4)

where ρ was defined in (2.5) and

E (X(t2)ijX(t1)rs) = δirR(t2 − t1)js (6.5)

where

R(t) =

∫
Φ(s)TΦ(t+ s)ds ∈ R

N×N . (6.6)

The definitions of matrix-variate Hermite polynomials in the symmetric and
rectangular cases are given in the following subsections. They need a recall
on zonal polynomials, as in [12].

Let Z be a symmetric m×m matrix, k be an integer and κ be a partition
of k in no more than m parts denoted κ ⊢ k, i.e. κ = (k1, . . . , kl), l ≤
m, k1 ≥ k2 ≥ kl ≥ 1, and k = k1 + · · · + kl. The zonal polynomials Cκ(Z)
are defined as a basis of the space of all homogeneous symmetric polynomials
in the latent roots of Z.

Actually, to simplify the exposition, the main results, in Propositions 6.1
and 6.4 are stated for polynomials only.

6.2 Symmetric real matrices

The Hermite polynomials H
(N)
κ (X), κ ⊢ k = 0, 1, · · · , where κ is a parti-

tion in no more than N parts, constitute a complete system of orthogonal
polynomials associated with the distribution of density

φN (X) = 2−N/2π−N(N+1)/4 exp−1

2
Tr (X2) (6.7)

with respect to the Lebesgue measure on R
N(N+1)/2. Actually

∫

SN

H(N)
κ (X)H(N)

σ (X)φN (X)dX = δκ,σk!Cκ(IdN ) (6.8)
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([18, formula (2.13)], [13, formula 5.3]).
We assume that W(N)(t) is a real symmetric matrix-valued Brownian

process, so thatX(t) defined in (6.2) is a stationary process with 1d-marginal
density φN . We set

ζ(κ)ε = ε1/2
∫ ε−1

0
H(N)

κ (X(t))dt . (6.9)

The main result of this section is the following proposition.

Proposition 6.1. As ε → 0,

ζ(κ)ε
(d)−→
ε→0

N (0;σ2
N,κ) (6.10)

where

σ2
N,κ = k!Cκ(IdN )

∫ ∞

0
ρ(t)kdt ,

and ρ was defined in a previous section.

Proof. We skip the upper index (N). The centered process (Hκ(X(t)), t ≥ 0)
is a non-linear function of a Gaussian multi-dimensional process and we
apply the Breuer-Major theorem. We will prove that the covariance of the
process Hκ(t) defined by

Γ(t) = E (Hκ(X(t))Hκ(X(0))

satisfies

Γ(t) = ρ(t)kk!Cκ(IdN ) . (6.11)

If t is fixed, we observe the identity in distribution

(X(t),X(0))
(d)
=
(
ρ(t)X(0) +

√
1− ρ(t)2X ′,X(0)

)
(6.12)

where X(0) and X ′ are independent and have density φN .
Summarizing, we have to compute

E (Hκ(X)Hκ(Y ))

with

Y = ρX +
√

1− ρ2X ′ , X ⊥ X ′,X
(d)
= X ′ . (6.13)

We will condition upon X and use a reduction to a computation coordinate-
wise. We will use the following lemma, which is probably well known.
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Lemma 6.2. There exists a system of numerical constants uκα indexed by

κ, a partition of k and α = (αij ∈ N
N(N+1]

2 ), a multi-index with |α| =∑
i≤j αij = k such that

Hκ(X) =
∑

|α|=k

uκα

(
∏

i

2−αii/2Hαii
(Xii

√
2)

)
∏

i<j

Hαij
(Xij) , (6.14)

where the polynomials Hp, p ≥ 1 are the classical (scalar) Hermite polyno-
mials.

Proof. The proof is based on the Rodrigues formula in the symmetric case
is [12, Sec. 3.2]. It says that if

∂X =:

(
1

2
(1 + δij)

∂

∂xij

)

i,j

.

then

Hκ(X) = φN (X)−1Cκ(−∂X)φN (X) . (6.15)

Besides we know that, if Z ∈ SN then by definition, Cκ(Z) is a symmetric
homogeneous polynomial in the eigenvalues. It has then a decomposition

Cκ(Z) =
∑

ν

cκν s1(Z)ν1 . . . sk(Z)νk ,

where sj(Z) = trZj and ν = (1ν12ν2 . . . kνk) with
∑

j jνj = k. Since tj(Z)νj

is a homogeneous polynomial of degree jνj in the entries of Z, we conclude
that Cκ(Z) has a decomposition

Cκ(Z) =
∑

|α|=k

uκα
∏

i≤j

Z
αij

ij , (6.16)

(see also [19, formula 2.6]).
This leads to

Hκ(X) = φN (X)−1
∑

|α|=k

(−1)kuκα
∏

i<j

2−αij
∂αij

∂X
αij

ij

∏

i

∂αii

∂Xαii

ii

φN (X) .

Now, the obvious decomposition

φN (X) =
∏

i

φ1(Xii)
∏

i<j

φ1(Xij

√
2) ,
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gives

Hκ(X) =
∑

|α|=k

(−1)kuκα
∏

i<j

2−αijφ1(Xij

√
2)−1 ∂αij

∂X
αij

ij

φ1(Xij

√
2)

×
∏

i

φ1(Xii)
−1 ∂αii

∂Xαii

ii

φ1(Xii) (6.17)

Then, using the classical definition of classical Hermite polynomials :

φ1(x)
−1 dp

dxp
φ1(x) = (−1)pHp(x) ,

we get (6.14).

End of the proof of Prop. 6.1
In the setting of (6.13) and using the property of the Ornstein-Uhlenbeck

semigroup, we get

E

[
Hαij

(ρXij +
√

1− ρ2X ′
ij)|X

]
= ραijHαij

(Xij) . (6.18)

A plugging into (6.14) leads to

E[Hκ(Y )|X] =
∑

|α|=k

uκα

(
∏

i

2−αii/2ραiiHαii
(Xii)

)
∏

i<j

ραijHαij
(Xij)

= ρk
∑

|α|=k

uκα

(
∏

i

2−αii/2Hαii
(Xii)

)
∏

i<j

Hαij
(Xij)

= ρkHκ(X) , (6.19)

and this proves that (6.43) holds true.

Remark 4. Another proof of the Lemma could be based on a striking rep-
resentation [13, 5.48 p. 87] :

Hκ(X) =

∫

SN

Cκ(X + iM)φN (M)dM . (6.20)

The second ingredient would be the decomposition (6.16) and independence
of coordinates. The issue is that we don’t know any definition of Cκ applied
to a complex (although symmetric) matrix.
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6.3 Hermitian matrices

A similar analysis could be made for Hermitian matrices as well. We do not
give details, but present some examples.

The following proposition gives an explicit way to compute the matrix-
variate Hermite polynomials in the Hermitian context. Following the nota-
tions therein, if κ is a partition of n, let us denote by χκ the character of
the irreducible representation of S(n) corresponding to κ and let us identify
χκ with the element ∑

σ∈S(n)
χκ(σ)σ ∈ C[S(n)] .

Proposition 6.3. [3, Cor. 6.11] The Hermite polynomial of matrix argu-
ment X, indexed by a partition κ, is a multiple of

H̃(N)
κ (X) :=

∑

σ∈S(n)
χκ(σ)H̃σ̂(X,N) (6.21)

where H̃α(X,u) is defined by (5.4)2 and σ̂ ∈ S0(n) is the permutation σ with
the additional cycle (0).

To begin with, let us consider the case n = 2.

1) σ̂ = (0)(12)
π 2− |π| πα β Trβ l qc

id 2 (0)(12) (0)(12) TrX2 0 1

(12) 1 (0)(1)(2) (0) 1 1 N
hence

H̃σ̂(X,N) = Tr (X2)−N2 . (6.22)

2) σ̂ = id
π 2− |π| πα β Trβ l qc

id 2 id id (TrX)2 0 1

(12) 1 (0)(12) (0) 1 1 1
hence

H̃σ̂(X,N) = (TrX)2 −N . (6.23)

The coefficients χκ(σ) associated to the partitions (or Young tableaux)
are given in [15].

If κ = (1, 1) then χκ = id− (12) so that

H̃κ(X) =
(
(TrX)2 −N

)
−
(
Tr (X2)−N2

)
. (6.24)

2In [3, Cor. 6.11], the above condition u = N was improperly replaced by u = 1/N .
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If κ = (2) then χκ = id + (12) so that

H̃κ(X) =
(
(TrX)2 −N

)
+
(
Tr (X2)−N2

)
. (6.25)

We can check easily that these polynomials are orthogonal under φN .

Let us look at the case n = 3.
1) σ̂ = (0)(123)

π 3− |π| πα β Tr β l qc

id 3 (0)(123) (0)(123) TrX3 0 1

(12)(3) 2 (0)(1)(23) (0)(1) TrX 1 1

(13)(2) 2 (0)(12)(3) (0)(1) TrX 1 1

(1)(23) 2 (0)(13)(2) (0)(1) TrX 1 1
hence

H̃σ̂(X,N) = −TrX3 + 3NTrX . (6.26)

2) σ̂ = (0)(12)(3)
π 3− |π| πα β Tr β l qc

id 3 (0)(12)(3) (0)(12)(3) TrX2TrX 0 1

(12)(3) 2 id (0)(1) TrX 1 N

(1)(23) 2 (0)(132) (0)(1) TrX 1 N−1

(13)(2) 2 (0)(123) (0)(1) TrX 1 N−1

hence

H̃σ̂(X,N) = (N2 + 2)TrX − (TrX2)TrX . (6.27)

3) σ̂ = id
π 3− |π| πα β Tr β l qc

id 3 id id (TrX)3 0 1

(12)(3) 2 (0)(12)(3) (0)(1) TrX 1 1

(13)(2) 2 (0)(13)(2) (0)(1) TrX 1 1

(1)(23)) 2 (0)(1)(23) (0)(1) TrX 1 1
hence

H̃σ̂(X,N) = 3NTrX − (TrX)3 . (6.28)

The coefficients χκ(σ) associated to the partitions (or Young tableaux)
are given in [15, Ex. 6 p. 14 and Example 4.5 p.47].

1. If κ = (1, 1, 1) then χκ = id− (12)− (13)− (23)+(123)+(132) so that
owing to (6.26-6.27-6.28)

H̃(N)
κ (X) = −(TrX3) + 3(TrX)(TrX2)− 2TrX3 − 3(N − 1)(N − 2)TrX .

(6.29)
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2. If κ = (2, 1)], then χλ = 2id−(123)−(132) so that owing to (6.26-6.28)

H̃(N)
κ (X) = 2

(
Tr (X3)− (TrX)3

)
. (6.30)

3. If κ = (3) then χλ = id + (12) + (13) + (23) + (123) + (132) so that
owing to (6.26-6.27-6.28)

H̃(N)
κ (X) = −(TrX)3 − 3TrXTrX2 − 2TrX3 + 3(N + 1)(N + 2)TrX .

(6.31)

These results are consistent with the expressions of Hermite polynomials
given in [14]. Therein, the complex case corresponds to α = 2/β = 1, C1

κ

are the complex zonal polynomials and si := Tr (Xi).

H1
(1,1) = C1

(1,1) +
N(N − 1)

2

=
1

2

(
s21 − s2 +N(N − 1)

)
.

H1
(2) = C1

(2) −N(N + 1)

= s21 + s2 −N(N + 1) .

H1
(1,1,1) = C1

(1,1,1) +
(N − 1)(N − 2)

2
C1
(1)

=
1

6
s31 −

1

2
s1s2 +

1

3
s3 +

(N − 1)(N − 2)

2
s1 .

H1
(2,1) = C1

(2,1) + 0 C1
(1)

=
1

3

(
s31 − s3

)
.

H1
(3) = C1

(3) +
(N + 1)(N + 2)

2
C1
(1)

=
1

6
s31 +

1

2
s1s2 +

1

3
s3 +

(N + 1)(N + 2)

2
s1 .

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

6.4 Rectangular matrices

We assume in this part that ℓ ≤ N . The Hermite polynomials H
(ℓ,N)
κ , κ ⊢

k = 0, 1, . . . , where κ is a partition in no more than ℓ parts, and whose
variates are rectangular ℓ×N real matrices constitue a complete system of
orthogonal polynomials associated with the distribution Nℓ×N(0, Idℓ⊗ IdN )
of density

φℓ,N (X) = (2π)−ℓN/2 exp−1

2
Tr (XXT ) (6.37)
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with respect to the Lebesgue measure on R
ℓN . Actually

∫

RℓN

H(ℓ,N)
κ (X)H(ℓ,N)

σ (X)φℓ,N (X) = δκ,σ4
k

(
N

2

)

κ

k!Cκ(Idℓ) . (6.38)

We refer to [12, Sec. 4] and [19] for the notations and for the interest of this
model.

We assume that W(ℓ,N)(t) is a ℓ×N matrix-valued process whose coor-
dinates are independent bilateral standard Brownian motions. Notice that
owing to the assumptions (6.1) and (6.5), the stationary processX(t) defined
in (6.3) has marginals distributed as Nℓ×N(0, Idℓ ⊗ IdN ).

Recall the definition (6.1)

R(t) =

∫
Φ(s)TΦ(t+ s)ds

which satisfies by assumption (6.1) R(0) = IdN . In this context the cor-
relation function ρ will be replaced by the symmetric, semidefinite positive
matrix

R(t) = (R(t)R(t)T )1/2 . (6.39)

Actually, we have like (2.6)

R(t) ≤ IdN . (6.40)

It is a consequence of the matrix Cauchy-Schwarz inequality - see for instance
[1, formula (2.9)]- which says that if |A| := (ATA)1/2 then

∣∣∣∣∣

m∑

1

BiAi

∣∣∣∣∣ ≤
(

m∑

1

|Ai|2
)

whenever
∑m

1 |BT
i |2 ≤ 1. This inequality can be easily extended to integrals

instead of sums, and taking Ai ≡ Φ(s)T , Bi ≡ Φ(t + s) we get exactly
|R(t)| ≤ IdN hence (6.40) since R(t)R(t)T and R(t)TR(t) have the same
nonzero eigenvalues.

We set

η(κ)ε = ε−1/2

∫ 1/ε

0
H(ℓ,N)

κ (X(t))dt , (6.41)

The main result of this section is the following proposition.
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Proposition 6.4. As ε → 0

ηκε
(d)−→
ε→0

N (0;σ2
ℓ,N,κ) (6.42)

where

σ2
ℓ,N,κ = 4−kk!

(
N

2

)

κ

Cκ(Idℓ)

Cκ(IdN )

∫ ∞

0
Cκ(R

2(t))dt .

Proof. In the sequel, we skip the index (ℓ,N) for simplicity.
Since X(t) is a standard Gaussian matrix and since H0 ≡ 1, the process

(Hκ(X(t)), t ≥ 0) is centered. Actually it is is a non-linear function of a
Gaussian multi-dimensional real process. We apply a continuous version of
the Breuer-Major theorem. We have to prove that the covariance of Hκ(t)
satisfies

E (Hκ(X(t))Hκ(X(0)) = 4−kk!

(
N

2

)

κ

Cκ(Idℓ)

Cκ(IdN )
Cκ(R

2(t)) . (6.43)

We continue as in the end of proof of Prop. 6.1, with the help of [19,
Th. 3.12], but with a careful treatment of R(t) which is not necessarily
symmetric.

Lemma 6.5. Set S(t) =
(
IdN −R(t)2

)1/2
. Then for fixed t,

(X(t),X(0))
(d)
= (Y,X(0)) , (6.44)

where Y := X(0)R(t)T +X ′S(t) with X ′ (d)= X(0) and independent of X(0).

Proof. We have, by independence

E(YijYrs) = E
(
(X(0)R(t)T )ij(X(0)R(t)T )rs

)
+ E

(
(X ′S(t))ij(X

′S(t))rs
)

=
∑

k,p

(R(t)jkR(t)sp + S(t)jkS(t)sp) δirδkp

=
(
R(t)R(t)T + S(t)2

)
js
δir =

(
R(t)2 + S(t)2

)
ir
δjs = δirδjs ,

which are the covariances of X(t).
Moreover, again by independence

E (YijX(0)rs) = E
(
(X(0)R(t)T )ijX(0)rs

)

=
∑

k

R(t)jkδirδks = R(t)jsδir ,
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which are the cross covariances of X(t) and X(0), as given in (6.5).

End of the proof of Prop. 6.4
From the above lemma, we have

E (Hκ(X(t))Hκ(X(0)) = E (Hκ(Y )Hκ(X(0))

but, since for any N ×N deterministic orthogonal matrix X(0)
(d)
= X(0)U ,

we get

E (Hκ(X(t))Hκ(X(0)) = E
(
Hκ(X(0)UR(t)T +X ′S(t))Hκ(X(0)U

)
.

(6.45)

Now, it is known that Hκ(MU) = Hκ(U) for any M ∈ R
ℓ×N , so that

choosing U = (R(t))−1 R(t) (polar decomposition of R(t)), we conclude
that

E (Hκ(X(t))Hκ(X(0)) = E
(
Hκ(X(0)R(t)T +X ′S(t))Hκ(X(0)

)
.

It is then enough to apply [19, Th. 3.12].
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